首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densities of sarcoplasmic reticulum (SR) Ca2+-pump were compared in proximal and distal segments of pig left coronary artery using two biochemical methods: acylphosphate formation and immunoreactivity in Western blots, and a functional assay based on contraction to SR Ca2+-pump inhibitors. In the microsomes prepared from smooth muscle, the level of the 115 kDa SR Ca2+-pump acylphosphate was 7.1 ± 0.3 -fold greater in distal than in proximal segments. Similarly in Western blots using these microsomes, the reactivity of the 115 kDa band to an anti-SR Ca2+-pump antibody was 5.3 ± 0.8 -fold greater in distal than in proximal segments. Endothelium free coronary artery rings contracted to the SR Ca2+-pump inhibitors Cyclopiazonic acid (CPA, EC50 = 0.19 ± 0.06 M) and thapsigargin (EC50 = 0.0095 ± 0.0035 M). With 10 M CPA, the force of contraction per tissue wet weight was 4.2 ± 0.5-fold greater in distal than in proximal rings, and with 1 M thapsigargin it was 4.0 ± 1.0 -fold greater. The contractions produced by 60 mM KCl were used as a control. In contrast to the CPA and thapsigargin, the force per mg tissue weight produced by 60 mM KCl did not differ significantly between the proximal and distal segments. Thus, the results from the two biochemical methods and those from the contractility data were all consistent with the smooth muscle in the distal segments of the coronary artery containing a higher density of the SR Ca2+-pump than the proximal segments.Abbreviations CPA cyclopiazonic acid - DTT dithiothreitol - SR sarcoplasmic reticulum  相似文献   

2.
We examined the effects of peroxynitrite pretreatment of pig coronary arteries on their sarcoplasmic reticulum (SR) Ca(2+) pump function. Pretreating rings from de-endothelialized arteries with peroxynitrite, followed by a wash to remove this agent, led to a decrease in the force of contraction produced in response to the SR Ca(2+) pump inhibitor cyclopiazonic acid (CPA, IC(50) = 87 +/- 6 microM). Inclusion of catalase and superoxide dismutase with the peroxynitrite did not alter its effect indicating that the inhibition was produced by peroxynitrite. Contractions produced by 30 mM KCl were not affected by up to 250 microM peroxynitrite. Smooth muscle cells cultured from this artery gave a transient increase in cytosolic Ca(2+) in response to CPA. Treating the cells with peroxynitrite inhibited this increase. Treating the SR-enriched isolated subcellular membrane fraction with peroxynitrite produced an inhibition of the ATP-dependent azide-insensitive oxalate-stimulated Ca(2+) uptake. Thus, peroxynitrite damages the SR Ca(2+)pump in the coronary artery, and this inhibition appears to lead to an inability of the arteries to respond to CPA. Thus, peroxynitrite produced from superoxide and NO in the arteries may compromise regulation of coronary tone which requires mobilization of Ca(2+) from the SR.  相似文献   

3.
Thapsigargin is found to be a potent inhibitor of the intracellular Ca2+ pump proteins from skeletal muscle sarcoplasmic reticulum (SR), cardiac SR, and brain microsomes. For skeletal muscle SR, the molar ratio of thapsigargin to Ca2+ pump protein for complete inhibition (MRc) of the Ca2+ loading rate, Ca(2+)-dependent ATPase activity, and formation of phosphorylated intermediate (EP) was approximately 1. When the Ca2+ pump protein of low affinity to Ca2+ (E2 state) was pretreated with thapsigargin, ATP and Ca2+ binding to the Ca2+ pump protein was completely inhibited. In the presence of Ca2+ (E1 state), Ca2+ pump protein was protected from inactivation by thapsigargin with respect to Ca2+ binding and EP formation. The MRc for brain microsomes, which mediate Ca2+ uptake into intracellular (inositol 1,4,5-trisphosphate-releasable) Ca2+ pools, is likewise stoichiometric. Approximately 30% of Ca2+ loading activity of brain microsomes was insensitive to thapsigargin, indicating the presence of other Ca2+ pumping system(s). The MRc for heart is 3.8, indicating that the Ca2+ pump of cardiac SR is less sensitive to thapsigargin. Phosphorylation of cardiac SR with protein kinase A increased the sensitivity to thapsigargin to MRc of 2.8. In summary, we find that: 1) thapsigargin is the most effective inhibitor of the Ca2+ pump protein of intracellular membranes (SR and endoplasmic reticulum); 2) its primary inhibitory action appears to inactivate the E2 form of the enzyme preferentially; 3) cardiac SR shows lesser sensitivity to thapsigargin than skeletal muscle SR and brain microsomes; protein kinase A treatment of cardiac SR enhances the sensitivity to the drug.  相似文献   

4.
5.
To make direct measurements of Ca2+ uptake and release by the sarcoplasmic reticulum (SR) of isolated smooth muscle cells, a fluorometric method for monitoring Ca2+ uptake by striated muscle SR vesicles (Kargacin, M.E., C.R. Scheid, and T.W. Honeyman. 1988. American Journal of Physiology. 245:C694-C698) was modified. With the method, it was possible to make continuous measurements of SR function in saponin-skinned smooth muscle cells in suspension. Calcium uptake by the SR was inhibited by thapsigargin and sequestered Ca2+ could be released by Br-A23187 and thapsigargin. From the rate of Ca2+ uptake by the skinned cells and the density of cells in suspension, it was possible to calculate the Ca2+ uptake rate for the SR of a single cell. Our results indicate that the SR Ca2+ pump in smooth muscle cells can remove Ca2+ at a rate that is 45-75% of the rate at which Ca2+ is removed from the cytoplasm of intact cells during transient Ca2+ signals. From estimates of SR volume reported by others and our measurements of the amount of Ca2+ taken up by the skinned cells, we conclude that the SR of a single cell can store greater than 10 times the amount of Ca2+ needed to elicit a single transient contractile response.  相似文献   

6.
We examined the effects of peroxynitrite pre-treatment on sarco/endoplasmic reticulum Ca(2+) (SERCA) pump in pig coronary artery smooth muscle and endothelium. In saponin-permeabilized cells, smooth muscle showed much greater rates of the SERCA Ca(2+) pump-dependent (45)Ca(2+) uptake/mg protein than did the endothelial cells. Peroxynitrite treatment of cells inhibited the SERCA pump more severely in smooth muscle cells than in endothelial cells. To determine implications of this observation, we next examined the effect of the SERCA pump inhibitor cyclopiazonic acid (CPA) on intracellular Ca(2+) concentration of intact cultured cells. CPA produced cytosolic Ca(2+) transients in cultured endothelial and smooth muscle cells. Pre-treatment with peroxynitrite (200 microM) inhibited the Ca(2+) transients in the smooth muscle but not in the endothelial cells. CPA contracts de-endothelialized artery rings and relaxes precontracted arteries with intact endothelium. Peroxynitrite (250 microM) pre-treatment inhibited contraction in the de-endothelialized artery rings, but not the endothelium-dependent relaxation. Thus, endothelial cells appear to be more resistant than smooth muscle to the effects of peroxynitrite at the levels of SERCA pump activity, CPA-induced Ca(2+) transients in cultured cells, and the effects of CPA on contractility. The greater resistance of endothelium to peroxynitrite may play a protective role in pathological conditions such as ischemia-reperfusion when excess free radicals are produced.  相似文献   

7.
Kang TM  Park MK  Uhm DY 《Life sciences》2002,70(19):2321-2333
We have investigated the effects of hypoxia on the intracellular Ca2+ concentration ([Ca2+]i) in rabbit pulmonary (PASMCs) and coronary arterial smooth muscle cells with fura-2. Perfusion of a glucose-free and hypoxic (PO2<50 mmHg) external solution increased [Ca2+]i in cultured as well as freshly isolated PASMCs. However it had no effect on [Ca2+]i in freshly isolated coronary arterial myocytes. In the absence of extracellular Ca2+, hypoxic stimulation elicited a transient [Ca2+]i increase in cultured PASMCs which was abolished by the simultaneous application of cyclopiazonic acid and ryanodine, suggesting the involvement of sarcoplasmic reticulum (SR) Ca2+ store. Pretreatment with the mitochondrial protonophore, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) enhanced the [Ca2+]i rise in response to hypoxia. A short application of caffeine gave a transient [Ca2+]i rise which was prolonged by CCCP. Decay of the caffeine-induced [Ca2+]i transients was significantly slowed by treatment of CCCP or rotenone. After full development of the hypoxia-induced [Ca2+]i rise, nifedipine did not decrease [Ca2+]i. These data suggest that the [Ca2+]i increase in response to hypoxia may be ascribed to both Ca2+ release from the SR and the subsequent activation of nifedipine-insensitive capacitative Ca2+ entry. Mitochondria appear to modulate hypoxia induced Ca2+ release from the SR.  相似文献   

8.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

9.
Jan CR  Ho CM  Wu SN  Tseng CJ 《Life sciences》1999,64(4):259-267
We studied the effect of thapsigargin on intracellular calcium levels ([Ca2+]i) measured by fura-2 fluorimetry in Madin Darby canine kidney (MDCK) cells. Thapsigargin elevated [Ca2+]i dose dependently with an EC50 of approximately 0.15 microM. The Ca2+ signal consisted of a slow rise, a gradual decay and a plateau. Depletion of the endoplasmic reticulum Ca2+ store with thapsigargin for 7 min abolished the [Ca2+]i increases evoked by bradykinin. Removal of extracellular Ca2+ reduced the thapsigargin response by approximately 50%. The Ca2+ signal was initiated by Ca2+ release from the internal store followed by capacitative Ca2+ entry (CCE). The thapsigargin-evoked CCE was abolished by La3 and Gd3+, and was partly inhibited by SKF 96365 and econazole. After depletion of the internal Ca2+ store for 30 min with another inhibitor of the internal Ca2+ pump, cyclopiazonic acid, thapsigargin failed to increase [Ca2+]i, thus suggesting that the thapsigargin-evoked Ca2+ influx was solely due to CCE. We investigated the mechanism of decay of the thapsigargin response. Pretreatment with La3+ (or Gd3+) or alkalization of extracellular medium to pH 8 significantly potentiated the Ca2+ signal; whereas pretreatment with carbonylcyanide m-chlorophynylhydrozone (CCCP) or removal of extracellular Na+ had no effect. Collectively, our results imply that thapsigargin increased [Ca2+]i in MDCK cells by depleting the internal Ca2+ store followed by CCE, with both pathways contributing equally. The decay of the thapsigargin response might be significantly governed by efflux via the plasmalemmal Ca2+ pump.  相似文献   

10.
Measurements of sarcoplasmic reticulum (SR) Ca(2+) uptake were made from aliquots of dissociated permeabilized ventricular myocytes using fura 2. Equilibration with 10 mM oxalate ensured a reproducible exponential decline of [Ca(2+)] from 600 nM to a steady state of 100-200 nM after addition of Ca(2+). In the presence of 5 microM ruthenium red, which blocks the ryanodine receptor, the time course of the decline of [Ca(2+)] can be modeled by a Ca(2+)-dependent uptake process and a fixed Ca(2+) leak. Partial inhibition of the Ca(2+) pump with 1 microM cyclopiazonic acid or 50 nM thapsigargin reduced the time constant for Ca(2+) uptake but did not affect the SR Ca(2+) leak. Addition of 10 mM inorganic phosphate (P(i)) decreased the rate of Ca(2+) accumulation by the SR and increased the Ca(2+) leak rate. This effect was reversed on addition of 10 mM phosphocreatine. 10 mM P(i) had no effect on Ca(2+) leak from the SR after complete inhibition of the Ca(2+) pump. In conclusion, P(i) decreases the Ca(2+) uptake capacity of cardiac SR via a decrease in pump rate and an increase in Ca(2+) pump-dependent Ca(2+) leak.  相似文献   

11.
The release of [3H]GABA evoked by depolarization with various concentrations of KCl was studied using superfused rat cerebrocortex synaptosomes. Elevating [K+] produced release of [3H]GABA over basal which was increasingly less dependent on external Ca2+ but more sensitive to the GABA transporter blocker SKF 100330 A. Accordingly, the sensitivity to clostridial toxins of the depolarization-evoked amino acid release was inversely correlated to the concentration of KCl used. However, at 50 mM K+, one-third of the stimulated release remained which was external Ca2+-independent but insensitive to SKF 100330 A. This release was prevented by BAPTA, thapsigargin or dantrolene; it also was inhibited by blocking in mitochondria the ATP production with oligomycin, the H+-dependent Ca2+ uniporter with RU 360, the Na+/Ca2+ exchanger with CGP 37157 or by lowering extraterminal [Na+]. In fluorescence experiments with fura-2/AM, 50 mM K+ (in Ca2+ free medium) caused elevation of cytosolic [Ca2+] that was sensitive to thapsigargin or CGP 37157; these compounds produced partially additive effects. When exocytosis was monitored with the fluorescent dye acridine orange, the fluorescence elicited by 50 mM K+ was sensitive to thapsigargin or CGP 37157, which produced additive effects, and to low-Na+ media. To conclude, extracellular K+ concentrations occurring in the CNS in certain pathological conditions provoke GABA release by mechanisms different from classical exocytosis. These include carrier-mediated release and internal Ca2+-dependent exocytosis; in the latter, mitochondrial Ca2+ seems to play a primary role.  相似文献   

12.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

13.
Ca2+ homeostasis plays a pivotal role in maintaining cell growth and function. Many heart diseases are related to the abnormalities in Ca2+ mobilization and extrusion. Ca2+-sensitive fluorescent dyes have been used successfully to estimate intracellular free Ca2+ ([Ca2+]i) level and the mechanisms of Ca2+ movements in living cells. This article is focused on the methodology involving the use of Fura-2/AM or free Fura-2 to measure agonist-induced Ca2+ mobilization as well as the mechanisms of changes in [Ca2+]i in cardiomyocytes. Methods involving Fura-2 technique for the measurement of Ca2+ extrusion from the cells and Ca2+ reuptake by sarcoplasmic reticulum (SR) are also described. The prevention of KCl-induced increase in the intracellular Ca2+ is shown by chelating the extracellular Ca2+ with EGTA or by the presence of Ca2+-channel inhibitors such as verapamil and diltiazem. The involvement of SR in the ATP-induced increase in intracellular Ca2+ is illustrated by the use of Ca2+-pump inhibitors, thapsigargin and cyclopiazonic acid as well as ryanodine which deplete the SR Ca2+ storage. The use of 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate (NCDC), an inhibitor of inositol 1,4,5-trisphosphate (IP3) production, is described for the attenuation of phosphatidic acid (PA) induced increase in Ca2+-mobilization. The increase in intracellular Ca2+ in cardiomyocytes by PA, unlike that by KCl or ATP, was observed in diabetic myocardium. Thus, it appears that the Fura-2 method for the measurement of Ca2+ homeostasis in cardiomyocytes is useful in studying the pathophysiology and pharmacology of Ca2+ movements.  相似文献   

14.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc.  相似文献   

15.
We document here the intrinsic fluorescence and 45Ca2+ binding properties of putative "E2P-related" complexes of Ca2+-free ATPase with fluoride, formed in the presence of magnesium, aluminum, or beryllium. Intrinsic fluorescence measurements suggest that in the absence of inhibitors, the ATPase complex with beryllium fluoride (but not those with magnesium or aluminum fluoride) does constitute an appropriate analog of the "ADP-insensitive" phosphorylated form of Ca2+-ATPase, the so-called "E2P" state. 45Ca2+ binding measurements, performed in the presence of 100 mm KCl, 5 mm Mg2+, and 20% Me2SO at pH 8, demonstrate that this ATPase complex with beryllium fluoride (but again not those with magnesium or aluminum fluoride) has its Ca2+ binding sites accessible for rapid, low affinity (submillimolar) binding of Ca2+ from the luminal side of SR. In addition, we specifically demonstrate that in this E2P-like form of ATPase, the presence of thapsigargin, 2,5-di-tert-butyl-1,4-dihydroxybenzene, or cyclopiazonic acid prevents 45Ca2+ binding (i.e. presumably prevents opening of the 45Ca2+ binding sites on the SR luminal side). Since crystals of E2P-related forms of ATPase have up to now been described in the presence of thapsigargin only, these results suggest that crystallizing an inhibitor-free E2P-like form of ATPase (like its complex with beryllium fluoride) would be highly desirable, to unambiguously confirm previous predictions about the exit pathway from the ATPase transmembrane Ca2+ binding sites to the SR luminal medium.  相似文献   

16.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

17.
The effect of thapsigargin on the activity of various enzymes involved in the Ca(2+)-homeostasis of cardiac muscle and on the contractile activity of isolated cardiomyocytes was investigated. Thapsigargin was found to be a potent and specific inhibitor of the Ca(2+)-pump of striated muscle SR (IC50 in the low nanomolar range). A strong reduction of the Vmax of the Ca(2+)-pump was observed while the Km (Ca2+) was only slightly affected. Reduction of the Vmax was caused by the inability of the ATPase to form the Ca(2+)-dependent acylphosphate intermediate. Thapsigargin did not change the passive permeability characteristics nor the function of the Ca(2+)-release channels of the cisternal compartments of the SR. In addition, no significant effects of thapsigargin on other ATPases, such as the Ca(2+)-ATPase and the Na+/K(+)-ATPase of the plasma membrane as well as the actomyosin ATPase could be detected. The contractile activity of paced adult rat cardiomyocytes was completely abolished by 300 nM thapsigargin. At lower concentrations the drug prolonged considerably the contraction-relaxation cycle, in particular the relaxation phase. The intracellular Ca(2+)-transients elicited by electrical stimulation (as measured by the changes in Fluo-3 fluorescence) decreased in parallel and the time needed to lower free Ca2+ down to the resting level increased. In conclusion, the results indicate that selective inhibition of the Ca(2+)-pump of the SR by thapsigargin accounts for the functional degeneration of myocytes treated with the drug.  相似文献   

18.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

19.
Ca2+ uptake into the endoplasmic reticulum (ER) is mediated by Ca2+ ATPase isoforms, which are all selectively inhibited by nanomolar concentrations of thapsigargin. Using ATP/Mg2+-dependent 45Ca2+ transport in rat brain microsomes, tissue sections, and permeabilized cells, as well as Ca2+ imaging in living cells we distinguish two ER Ca2+ pools in the rat CNS. Nanomolar levels of thapsigargin blocked one component of brain microsomal 45Ca2+ transport, which we designate as the thapsigargin-sensitive pool (TG-S). The remaining component was only inhibited by micromolar thapsigargin, and thus designated as thapsigargin resistant (TG-R). Ca2+ ATPase and [32P]phosphoenzyme assays also distinguished activities with differential sensitivities to thapsigargin. The TG-R Ca2+ uptake displayed unique anion permeabilities, was inhibited by vanadate, but was unaffected by sulfhydryl reduction. Ca2+ sequestered into the TG-R pool could not be released by inositol-1,4,5-trisphosphate, caffeine, or cyclic ADP-ribose. The TG-R Ca2+ pool had a unique anatomical distribution in the brain, with selective enrichment in brainstem and spinal cord structures. Cell lines that expressed high levels of the TG-R pool required micromolar concentrations of thapsigargin to effectively raise cytoplasmic Ca2+ levels. TG-R Ca2+ accumulation represents a distinct Ca2+ buffering pool in specific CNS regions with unique pharmacological sensitivities and anatomical distributions.  相似文献   

20.
Molecular and Cellular Biochemistry - Densities of sarcoplasmic reticulum (SR) Ca2+-pump were compared in proximal and distal segments of pig left coronary artery using two biochemical methods:...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号