首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell lineages of the primitive endoderm and the visceral endoderm of mouse embryos were examined by culturing whole embryos in vitro. The primitive endoderm and visceral endoderm cells could be labelled by incubation of embryos in a medium containing horse radish peroxidase (HRP). HRP localization was chased throughout the culture period. The results show that the visceral endoderm derives from the primitive endoderm, and the visceral endoderm forms only the extra-embryonic endoderm (yolk sac endoderm) of the conceptus. The definitive endoderm which is probably derived from the head process, newly appears on the ventral surface of the embryo.  相似文献   

2.
Lim1 is a homeobox gene expressed in the extraembryonic anterior visceral endoderm and in primitive streak-derived tissues of early mouse embryos. Mice homozygous for a targeted mutation of Lim1 lack head structures anterior to rhombomere 3 in the hindbrain. To determine in which tissues Lim1 is required for head formation and its mode of action, we have generated chimeric mouse embryos and performed tissue layer recombination explant assays. In chimeric embryos in which the visceral endoderm was composed of predominantly wild-type cells, we found that Lim1(-)(/)(-) cells were able to contribute to the anterior mesendoderm of embryonic day 7.5 chimeric embryos but that embryonic day 9.5 chimeric embryos displayed a range of head defects. In addition, early somite stage chimeras generated by injecting Lim1(-)(/)(-) embryonic stem cells into wild-type tetraploid blastocysts lacked forebrain and midbrain neural tissue. Furthermore, in explant recombination assays, anterior mesendoderm from Lim1(-)(/)(-) embryos was unable to maintain the expression of the anterior neural marker gene Otx2 in wild-type ectoderm. In complementary experiments, embryonic day 9.5 chimeric embryos in which the visceral endoderm was composed of predominantly Lim1(-)(/)(-) cells and the embryo proper of largely wild-type cells, also phenocopied the Lim1(-)(/)(-) headless phenotype. These results indicate that Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation and that its inactivation in these tissues produces cell non-autonomous defects. We discuss a double assurance model in which Lim1 regulates sequential signaling events required for head formation in the mouse.  相似文献   

3.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
I Zusman  P Yaffe  A Ornoy 《Acta anatomica》1987,128(1):11-18
The ultrastructure of the visceral yolk sac endoderm of in vivo developing 9- to 13-day-old embryos from 2 diabetic rat models (streptozotocin diabetes and Cohen--genetically determined--diabetes) and from nondiabetic rats fed high sucrose diets have been studied. This was compared to yolk sacs from 9.5-day-old embryos cultured for 48 h in sera from diabetic and nondiabetic rats fed a high-sucrose diet. Light-microscopic, TEM and SEM studies showed that the pathological cellular changes in the visceral yolk sac endoderm from diabetic rats were first observed on day 9 and were most severe among 11-day-old embryos. In vitro culture of control rat embryos in serum from experimental animals induced a reduction in the number of microvilli, of vacuolar intracellular inclusions and an increase in the number of degenerated endodermal cells. SEM studies showed that in addition to disappearance of microvilli, the majority of cells were collapsed and had degenerated cell membranes. Culture of embryos from diabetic animals in control serum only slightly reversed the pathological changes in the visceral yolk sac endoderm. A good correlation exists between the rate of embryonic malformations in diabetic rats and an index of endodermal-cell damage in the visceral yolk sac.  相似文献   

5.
The signal transduction adapter protein Disabled-2 (Dab2) is one of the two mammalian orthologs of the Drosophila Disabled. The brain-specific Disabled-1 (Dab1) functions in positional organization of brain cells during development. Dab2 is widely distributed and is highly expressed in many epithelial cell types. The dab2 gene was interrupted by in-frame insertion of beta-galactosidase (LacZ) in embryonic stem cells and transgenic mice were produced. Dab2 expression was first observed in the primitive endoderm at E4.5, immediately following implantation. The homozygous Dab2-deficient mutant is embryonic lethal (earlier than E6.5) due to defective cell positioning and structure formation of the visceral endoderm. In E5.5 dab2 (-/-) conceptus, visceral endoderm-like cells are present in the deformed primitive egg cylinder; however, the visceral endoderm cells are not organized, the cells of the epiblast have not expanded, and the proamniotic cavity fails to form. Disorganization of the visceral endodermal layer is evident, as cells with positive visceral endoderm markers are scattered throughout the dab2 (-/-) conceptus. Only degenerated remains were observed at E6.5 for dab2 (-/-) embryos, and by E7.5, the defective embryos were completely reabsorbed. In blastocyst in vitro culture, initially cells with characteristics of endoderm, trophectoderm, and inner cell mass were observed in the outgrowth of the hatched dab2 (-/-) blastocysts. However, the dab2 (-/-) endodermal cells are much more dispersed and disorganized than those from wild-type blastocysts, the inner cell mass fails to expand, and the outgrowth degenerates by day 7. Thus, Dab2 is required for visceral endodermal cell organization during early mouse development. The absence of an organized visceral endoderm in Dab2-deficient conceptus leads to the growth failure of the inner cell mass. We suggest that Dab2 functions in a signal pathway to regulate endodermal cell organization using endocytosis of ligands from the blastocoel cavity as a positioning cue.  相似文献   

6.
小鼠早期胚胎发育期间TGF—β免疫组织化学定位   总被引:2,自引:1,他引:1  
The distribution of transforming growth factor beta-1 (TGF-beta-1) in the early developing mouse embryos between day 1 and day 12 of gestation was examined by immunohistochemical techniques. Polyclonal rabbit antiserum raised against a synthetic oligopeptide identical to the N-terminal residues 1-29 of TGF-beta-1 from human platelets was used. The following results were obtained: 1. Embryonic cells of early cleavage stages (2, 4 and 8 cells) and late morulae showed positive immunofluorescent reaction without any difference in staining intensity (Plate I, Figs. 1-4). 2. Marked staining of blastocysts in toto or sections with anti-TGF-beta-1 antibodies by either immunofluorescence or immunoperoxidase reaction was also observed. Inner cell mass (ICM) cells and trophoectoderm cells were both reacted, but more intense staining was found in primary endoderm cells differentiated from ICM cells adjacent to blastocoele (Plate II, Fig. 5). 3. Scattered granules stained strongly with immunoperoxidase reaction were present in embryonic ectoderm and visceral endoderm surrounding the forming mesoderm which was only slightly stained (Plate II, Fig. 6). 4. Intense immunoperoxidase staining was also present in mesoderm of visceral yolk sac of day 8 and day 10 embryos (Plate II, Fig. 7). 5. During the formation of somites, neural tube and limb bud, remarkable staining was found in mesenchyme, individual cells of somites, mucous layer of gut tubes, heart and limb buds (Plate III, Figs. 8-10). No significant staining was seen in neural cells per se except the inner surface of neural tube. The results of present studies indicate that abundant TGF-beta-1 is present in preimplantation mouse embryos including cleavage, morulae and blastocyst stages. In postimplantation embryos, TGF-beta-1 appears to play an important role in the differentiation of endoderm and mesoderm, particularly in the development of extraembryonic tissues, and in later morphogenetic and histogenetic events involving mainly mesoderm or mesenchyme cells.  相似文献   

7.
Mouse trophoblast and decidua were examined by means of immunohistochemistry to define the localization of type I interferon. The decidua were stained for type I interferon at the time of implantation. The strong reaction was first observed in the primary decidual zone on day 5 and subsequently in the secondary decidual zone on day 6. After day 10, the decidua basalis and decidua capsularis showed a strong reaction. At the one-cell stage, embryos were weakly labelled, but a positive reaction was recognized in compacted morulae. Blastocysts on days 3 and 4 were positive in trophoblast and inner cell mass and a strong reaction was observed in the primitive endoderm on day 4. The visceral endoderm on day 5 and the trophoblast on day 6 were positive. After day 10, the trophoblast giant cells, labyrinth, visceral yolk sac and fetal blood cells gave a positive reaction. This study is the first demonstration of type I interferon localization in situ in mouse trophoblast and decidua during decidual formation.  相似文献   

8.
9.
Anterior-posterior polarity of the mouse embryo has been thought to be established when distal visceral endoderm (DVE) at embryonic day (E) 5.5 migrates toward the future anterior side to form anterior visceral endoderm (AVE). Lefty1, a marker of DVE and AVE, is asymmetrically expressed in implanting mouse embryos. We now show that Lefty1 is expressed first in a subset of epiblast progenitor cells and then in a subset of primitive endoderm progenitors. Genetic fate mapping indicated that the latter cells are destined to become DVE. In contrast to the accepted notion, however, AVE is not derived from DVE but is newly formed after E5.5 from Lefty1(-) visceral endoderm cells that move to the distal tip. Concomitant with DVE migration, all visceral endoderm cells in the embryonic region undergo global movement. In embryos subjected to genetic ablation of Lefty1-expressing DVE cells, AVE was formed de novo but the visceral endoderm including the newly formed AVE failed to migrate, indicating that DVE guides the migration of AVE by initiating the global movement of visceral endoderm cells. Future anterior-posterior polarity is thus already determined by Lefty1(+) blastomeres in the implanting blastocyst.  相似文献   

10.
Using H253 mouse stock harboring X-linked HMG-lacZ transgene, we examined X chromosome inactivation patterns in sectioned early female embryos. X-gal staining patterns were generally consistent with the paternal X inactivation in the trophectoderm and the primitive endoderm cell lineages and random inactivation in the epiblast lineages. The occurrence of embryonic visceral endoderm cells apparently at variance with the paternal X chromosome inactivation in 7.5 dpc embryos was explained by the replacement of visceral endoderm cells with cells of epiblast origin. The frequency of cells negative for X-gal staining in 4.5-5.5 dpc XmXp* embryos fluctuated considerably especially in the extraembryonic ectoderm and the primitive endoderm, whereas it was less variable in the embryonic ectoderm. We could not, however, determine whether it is a normal phenomenon revealed for the first time by the use of HMG-lacZ transgene or an abnormality caused by the multicopy transgene.  相似文献   

11.
The signaling pathway for Nodal, a ligand of the TGFβ superfamily, plays a central role in regulating the differentiation and/or maintenance of stem cell types that can be derived from the peri-implantation mouse embryo. Extra-embryonic endoderm stem (XEN) cells resemble the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that XEN cells treated with Nodal or Cripto (Tdgf1), an EGF-CFC co-receptor for Nodal, display upregulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE), and can contribute to visceral endoderm and AVE in chimeric embryos. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic (Cfc1), and require Cryptic for Nodal signaling. Notably, the response to Nodal is inhibited by the Alk4/Alk5/Alk7 inhibitor SB431542, but the response to Cripto is unaffected, suggesting that the activity of Cripto is at least partially independent of type I receptor kinase activity. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirmed the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells and provide new insights into the specification of these cell types in vivo.  相似文献   

12.
13.
The distribution of the stage-specific embryonic antigen SSEA-3 was studied immunohistochemically on postimplantation mouse embryos. This carbohydrate antigen, identified as an epitope of a globo-series ganglioside isolated from human teratocarcinoma cells (Kannagi et al., 1983, J. Biol. Chem.258, 8934–8942) was originally detected on the zygote and mouse early cleavage-stage embryos. It disappears on the early blastocyst and reappears on the primitive endoderm of the implanting blastocyst (Shevinsky et al., 1982, Cell30, 697–705). We now show in the early egg cylinder (on the sixth day of pregnancy) SSEA-3 is present in the entire visceral endoderm but not in any other part of the conceptus. From Day 7 of pregnancy onward, SSEA-3 is restricted to the extraembryonic visceral endoderm and the visceral yolk sac cells. Therefore, SSEA-3 is a useful marker for this endodermal cell lineage in midgestational mouse embryos.  相似文献   

14.
The anterior visceral endoderm (AVE) has attracted recent attention as a critical player in mouse forebrain development and has been proposed to act as "head organizer" in mammals. However, the precise role of the AVE in induction and patterning of the anterior neuroectoderm is not yet known. Here we identified a 5'-flanking region of the mouse Otx2 gene (VEcis) that governs the transgene expression in the visceral endoderm. In transgenic embryos, VEcis-active cells were found in the distal visceral endoderm at 5.5 days postcoitus (dpc), had begun to move anteriorly at 5.75 dpc, and then became restricted to the AVE prior to gastrulation. The VEcis-active visceral endoderm cells exhibited ectodermal morphology distinct from that of the other endoderm cells and consisted of two cell layers at 5.75 dpc. In the Otx2(-/-) background, the VEcis-active endoderm cells remained distal even at 6.5 dpc when a primitive streak was formed; anterior definitive endoderm was not formed nor were any markers of anterior neuroectoderm ever induced. The Otx2 cDNA transgene under the control of the VEcis restored these Otx2(-/-) defects, demonstrating that Otx2 is essential to the anterior movement of distal visceral endoderm cells. In germ-layer explant assays between ectoderm and visceral endoderm, the AVE did not induce anterior neuroectoderm markers, but instead suppressed posterior markers in the ectoderm; Otx2(-/-) visceral endoderm lacked this activity. Thus Otx2 is also essential for the AVE to repress the posterior character. These results suggest that distal visceral endoderm cells move to the future anterior side to generate a prospective forebrain territory indirectly, by preventing posteriorizing signals.  相似文献   

15.
B E Batten  J L Haar 《Acta anatomica》1979,105(3):256-268
The effects of a maternal injection of trypan blue on primitive streak mouse embryos were studied with electron microscopy. Commercial trypan blue was purified by descending paper chromatography, and pregnant females received an intraperitoneal injection of the collected blue fraction on the evening of the 7th day of gestation. Ultrastructurally, the changes in the visceral endoderm were apparent 10 min after the injection and included an increase in the number of fuzzy-coated vesicles in the apical cytoplasm. By 20 min the apical cytoplasm of the extraembryonic visceral endodermal cells was filled with many fuzzy-coated vesicles and numerous vacuoles of various size and electron density. 30 min after the injection, the extraembryonic visceral endodermal cells were relatively smooth lacking a microvillous border and evidence of endocytic activity was rare. Many embryonic visceral endodermal cells were observed in various stages of degeneration although the underlying embryonic ectoderm appeared unaffected. Morphologically, it appears that trypan blue exerts its first effect by altering the endocytic activity of the visceral endoderm.  相似文献   

16.
Studies were conducted to determine if the expression of the gene for retinol-binding protein (RBP) and/or transthyretin (TTR) could be induced upon differentiation of F9 teratocarcinoma cells to either visceral endoderm or parietal endoderm. Both TTR mRNA and RBP mRNA were undetectable in the undifferentiated F9 stem cells and in F9 cells differentiated to parietal endoderm. However, TTR mRNA and RBP mRNA were both detected in F9 cell aggregates differentiated to embryoid bodies (which contain visceral endoderm-like cells) by treatment of the aggregates in suspension with retinoic acid. TTR mRNA was observed at 3 days, and RBP mRNA at 5 days, after treatment of the F9 cell aggregates with retinoic acid. Both TTR mRNA and RBP mRNA were found to be specifically localized by in situ hybridization in the outer layer of cells (the visceral endoderm-like cells) of the embryoid bodies. Finally, synthesis and secretion of both RBP and TTR by F9 cell embryoid bodies was demonstrated by specific immunoprecipitation of each newly synthesized protein from the culture medium. These data thus demonstrate the production and presence of RBP mRNA and TTR mRNA, and the synthesis and secretion of RBP and TTR, by F9 cell embryoid bodies (specifically by visceral endoderm-like cells). This finding suggests that these two proteins may be synthesized by rodent embryos extremely early in embryonic development.  相似文献   

17.
A 100,000-Da glucose-regulated surface protein (100K-GRP) has previously been isolated from the cell surface and culture medium of human fibroblasts. A rabbit antiserum directed against this protein reacts with the cell surface of both human and murine cultured cells and with a broad spectrum of mammalian tissues. It is shown, via indirect immunofluorescence, that this protein is also present on cells of the developing mouse embryo and can be detected as early as the 4-cell stage. The 8-cell embryo and morula show positive surface labeling; the inner cell masses of both the pre- and postimplantation blastocysts are also positive but the trophectoderm is not. At the 6-day egg cylinder stage, the embryonic and extra-embryonic ectoderm label intensely with the antiserum and visceral endoderm shows faint labeling. No labeling can be detected on parietal endoderm or on the trophoblastic giant cells invading the uterine decidua. However, the internal cells of the ectoplacental cone exhibit bright fluorescence. The same pattern is observed on 7- to 8.5-day embryos, except that at this stage no label is associated with the visceral endoderm. In addition, mesodermal cells emerging from the primitive streak are also labeled.  相似文献   

18.
19.
Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral endoderm (AVE) is a cluster of extra-embryonic cells that secretes inhibitors of the Wnt and Nodal pathways to inhibit posterior development. Because Rac proteins are crucial regulators of cell migration and mouse Rac1 mutants die early in development, we tested whether Rac1 plays a role in AVE migration. Here we show that Rac1 mutant embryos fail to specify an anterior-posterior axis and, instead, express posterior markers in a ring around the embryonic circumference. Cells that express the molecular markers of the AVE are properly specified in Rac1 mutants but remain at the distal tip of the embryo at the time when migration should take place. Using tissue specific deletions, we show that Rac1 acts autonomously within the visceral endoderm to promote cell migration. High-resolution imaging shows that the leading wild-type AVE cells extend long lamellar protrusions that span several cell diameters and are polarized in the direction of cell movement. These projections are tipped by filopodia-like structures that appear to sample the environment. Wild-type AVE cells display hallmarks of collective cell migration: they retain tight and adherens junctions as they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Analysis of mutant embryos shows that Rac1 is not required for intercellular signaling, survival, proliferation, or adhesion in the visceral endoderm but is necessary for the ability of visceral endoderm cells to extend projections, change shape, and exchange neighbors. The data show that Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan and suggest that Rac1 is essential for collective migration in mammalian tissues.  相似文献   

20.
Gap junctional communication permits the direct intercellular exchange of small molecules and ions. In vertebrates, gap junctions are formed by the conjunction of two connexons, each consisting of a hexamer of connexin proteins, and are either established or degraded depending on the nature of the tissue formed. Gap junction function has been implicated in both directing developmental cell fate decisions and in tissue homeostasis/metabolite exchange. In mouse development, formation of the extra embryonal parietal endoderm from visceral endoderm is the first epithelial-mesenchyme transition to occur. This transition can be mimicked in vitro, by F9 embryonal carcinoma (EC) cells treated with retinoic acid, to form (epithelial) primitive or visceral endoderm, and then with parathyroid hormone-related peptide (PTHrP) to induce the transition to (mesenchymal) parietal endoderm. Here, we demonstrate that connexin43 mRNA and protein expression levels, protein phosphorylation and subcellular localization are dynamically regulated during F9 EC cell differentiation. Dye injection showed that this complex regulation of connexin43 is correlated with functional gap junctional communication. Similar patterns of connexin43 expression, localization and communication were found in visceral and parietal endoderm isolated ex vivo from mouse embryos at day 8.5 of gestation. However, in F9 cells this tightly regulated gap junctional communication does not appear to be required for the differentiation process as such.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号