首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.  相似文献   

4.
5.
6.
7.
Global gene expression in Leishmania   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
The parasitic protozoan Leishmania is the etiological agent of human leishmaniasis worldwide. It undergoes cellular differentiation from the sandfly promastigote form into amastigotes within mammalian macrophages, a process that is essential for its intracellular survival. Here, we characterized the Leishmania infantum PERK eIF2alpha kinase homologue and addressed its role in the parasite's cytodifferentiation. We show that Leishmania PERK is an endoplasmic reticulum (ER) transmembrane protein that largely colocalizes with the ER BiP chaperone. The Leishmania PERK catalytic kinase domain undergoes autohyperphosphorylation and phosphorylates the translation initiation factor 2-alpha subunit (eIF2alpha) in vitro at threonine 166. We also report that PERK is post-translationally regulated specifically in the intracellular stage of the parasite or under ER stress, most likely through extensive autohyperphosphorylation. We have generated a PERK dominant negative mutant overexpressing a truncated PERK protein lacking the N-terminal luminal domain and showed that this mutant is impaired in eIF2alpha phosphorylation in response to ER stress or during amastigote differentiation. Most importantly, we showed that lack of eIF2alpha phosphorylation markedly delays the Leishmania differentiation process towards amastigote forms both in parasites grown axenically or within macrophages. These data highlight the importance of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation in the intracellular development of Leishmania.  相似文献   

10.
Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a 384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading method was based on DNA staining and required the development of a customized algorithm to analyze the images, which enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity information based on the number of host cells. Comparison of this assay with one that used the promastigote form to screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the most appropriate to be used in primary screening assay for Leishmania.  相似文献   

11.
12.
13.
14.
Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the Mediterranean Basin. The promastigote and amastigote stages alternate in the life cycle of the parasite, developing inside the sand-fly gut and inside mammalian phagocytic cells, respectively. High-throughput genomic and proteomic analyses have not focused their attention on promastigote development, although partial approaches have been made in Leishmania major and Leishmania braziliensis. For this reason we have studied the expression modulation of an etiological agent of visceral leishmaniasis throughout the life cycle, which has been performed by means of complete genomic microarrays. In the context of constitutive genome expression in Leishmania spp. described elsewhere and confirmed here (5.7%), we found a down-regulation rate of 68% in the amastigote stage, which has been contrasted by binomial tests and includes the down-regulation of genes involved in translation and ribosome biogenesis. These findings are consistent with the hypothesis of pre-adaptation of the parasite to intracellular survival at this stage.  相似文献   

15.
16.
The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect-infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy.  相似文献   

17.
18.
We used comparative two-dimensional gel electrophoresis (2-DE) and mass spectrometry methodologies to highlight and identify proteins that are differentially expressed in the intracellular stage of the parasite Leishmania donovani infantum, a causative agent of visceral leishmaniasis. During its digenetic life cycle, Leishmania alternates between the alimentary tract of the sandfly vector as an extracellular promastigote and the acidic phagolysosomes of macrophage cells as an intracellular amastigote. Proteins differentially expressed in the intracellular form of the parasite are thought to be important for intracellular survival and pathogenesis. We used narrow pH range strips for isoelectric focusing to resolve soluble proteins of both developmental stages of L. infantum. More than 62 proteins differentially expressed in amastigotes were detected among approximately 2000 protein spots resolved by 2-DE. A quadrupole time-of-flight analysis of few selected protein spots, specifically expressed in the amastigote stage, permitted the identification of two proteins, part of the energetic metabolism pathways, the isocitrate dehydrogenase and the glycolytic enzyme triosephosphate isomerase. The kinetic parameters of these two enzymes were measured in both developmental stages of the parasite and their activity was indeed found to be higher in amastigotes. These findings bring a new insight in our understanding of metabolic and energy requirements of the intracellular form of Leishmania. Comparative analysis of the proteome of both developmental stages of the protozoan parasite Leishmania should permit the identification of protein candidates for the development of vaccines and new drugs.  相似文献   

19.
Leishmania are intracellular protozoan parasites that reside primarily in host mononuclear phagocytes. Infection of host macrophages is initiated by infective promastigote stages and perpetuated by an obligate intracellular amastigote stage. Studies undertaken over the last decade have shown that the composition of the complex surface glycocalyx of these stages (comprising lipophosphoglycan, GPI-anchored glycoproteins, proteophosphoglycans and free GPI glycolipids) changes dramatically as promastigotes differentiate into amastigotes. Marked stage-specific changes also occur in the expression of other plasma membrane components, including type-1, polytopic and peripheral membrane proteins, reflecting the distinct microbicidal responses and nutritional environments encountered by these stages. More recently, a number of Leishmania mutants lacking single or multiple surface components have been generated. While some of these mutants are less virulent than wild type parasites, many of these mutants exhibit only mild or no loss of virulence. These studies suggest that, 1) the major surface glycocalyx components of the promastigote stage (i.e. LPG, GPI-anchored proteins) only have a transient or minor role in macrophage invasion, 2) that there is considerable functional redundancy in the surface glycocalyx and/or loss of some components can be compensated for by the acquisition of equivalent host glycolipids, 3) the expression of specific nutrient transporters is essential for life in the macrophage and 4) the role(s) of some surface components differ markedly in different Leishmania species. These mutants will be useful for identifying other surface or intracellular components that are required for virulence in macrophages.  相似文献   

20.
The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号