共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of water stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants 总被引:3,自引:2,他引:3
Abstract. Two cotton species ( Gossypium hirsutum L. cv. SJ-2 and Gossypium barbadence cv. S-5) were grown under irrigated (wet) and non-irrigated (dry) conditions in the same field. Leaf water was enriched in 18 O and deuterium in the dry treatment relative to the wet treatment for both species. Only in plants of S-5 was a similar enrichment observed in leaf cellulose. In both species, the isotopic composition of leaf cellulose must reflect the isotopic composition of the actual water pool involved in cellulose synthesis. Therefore, our observations indicate that one species (SJ-2) can maintain a relative isolation of this water pool from direct evapotranspirational effects. Such plant species will more faithfully record, in the isotopic composition of organic matter, the isotopic composition of ground water. In contrast, the isotopic composition of organic matter in plants such as S-5 could be used as an integrated signal reflecting humidity conditions during growth. Water use efficiency, based on seed-cotton yield and total water applied, correlated linearly with differences in carbon isotopic ratios between species in both the wet and dry treatments and between treatments in each species. 相似文献
2.
3.
BACKGROUND AND AIMS: Leaf area of cotton seedlings (Gossypium hirsutum) can be reduced by as much as 50 % by early season thrips infestations, but it is well documented that plants can regain the difference in leaf area once infestation ceases. The processes involved in the recovery have not been identified. Hypotheses include enhancement of the photosynthetic rate of the damaged leaves, more efficient leaf construction (i.e. more leaf area per unit of dry matter invested in new leaves), and more branching. METHODS: This 2-year field study examined these hypotheses and found that thrips-affected plants recovered from a 30 % reduction in total leaf area. During the recovery period, repeated measurements of gas exchange, leaf morphology and individual leaf areas at all nodes were made to assess their contribution to the recovery. KEY RESULTS: Recovery was not achieved through the previously proposed mechanisms. The pattern of nodal development indicated that the duration of leaf expansion of the smaller deformed leaves was shorter than that of control leaves, possibly because they had fewer cells. The production and expansion of healthy upper node leaves in thrips-affected plants could, therefore, begin sooner, about 1-2.5 nodes in advance of control plants. The proposed process of recovery was evident but weaker in the second year where thrips numbers were higher. CONCLUSIONS: It is concluded that thrips-affected plants overcame the leaf area disparity through an accelerated ontogeny of main stem leaves. By completing the expansion of smaller but normally functioning lower node leaves earlier, resources were made available to the unfolding of larger upper node leaves in advance of control plants. The generality of this mode of plant resistance in pest damage remains to be determined. 相似文献
4.
Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates 总被引:4,自引:5,他引:4
D. YAKIR 《Plant, cell & environment》1992,15(9):1005-1020
Variations in the natural abundance of 18O and 2H in plant cellulose are influenced by the isotopic composition of the water directly involved in metabolism—the metabolic water fraction. The isotopic distinction between the metabolic source water and total tissue water must reflect the formation of isotopic gradients within the tissue that are influenced by the rate of water turnover, by properties of the water conducting system and by environmental conditions. It seems that the 18O abundance in the metabolic water is conserved in cellulose with a relatively constant isotope effect. The relationship of the 2H abundance between metabolic water and cellulose is more complex. Hydrogen incorporated into photosynthetic products during primary reduction steps is highly depleted in 2H. However, a large proportion of these hydrogens are subsequently replaced by exchange with water, leading to 2H enrichment during heterotrophic metabolism. Deciphering the oxygen isotope ratio of cellulose could help in providing insights into the carbon and oxygen fluxes exchanged between plants and the atmosphere. This is because the 18O abundance in cellulose records the 18O abundance in the metabolic water, which in turn, controls the oxygen isotopic signatures of the CO2 and O2 released by plants into the atmosphere. The hydrogen isotope effects associated with carbohydrate metabolism provide insights into the autotrophic state of a plant tissue. This is because the hydrogen isotope ratio of carbohydrates must reflect the net effects of the two opposing isotope effects associated with photosynthesis and heterotrophic metabolism. 相似文献
5.
Water relations of cotton (Gossypium hirsutum L.) fruits have received less attention than those of leaves, although crop water status has an important influence on fruit physiology. This study was conducted to describe diurnal changes in the water relations of cotton fruits and subtending leaves. Young, expanding fruits and full-sized fruits were compared because of previously reported changes in xylem maturity with ontogeny. Diurnal changes in relative water content were greater in leaves than in the capsule walls of fruits. The capsule walls of young fruits had a higher relative water content than subtending leaves, and water content was lower in full-sized (87%) than in expanding (92%) fruits. Water potentials of subtending leaves were always approximately 0-3 MPa lower than those of capsule walls. Water potential gradients favoured passive water flow from young fruits to branches, but water potentials of branches and the capsule walls of full-sized fruits were similar (?0.7 MPa). Water potential gradients were consistent throughout the day. These results indicate that xylem transport to young fruits is unlikely, but may occur in older fruits. 相似文献
6.
Diel water movement between parenchyma and chlorenchyma of two desert CAM plants under dry and wet conditions 总被引:3,自引:2,他引:3
Abstract. Electric-circuit analogue models of the water relations of crassulacean acid metabolism (CAM) succulents such as Agave deserti and Ferocactus acanthodes have predicted diel movement of water between the water-storage parenchyma and the photo-synthetic chlorenchyma. Injection of tritiated water into either tissue in the laboratory confirmed substantial and bidirectional water movements, especially under conditions of wet soil. For A. deserti , water movement from the water-storage parenchyma to the chlorenchyma increased at night as the chlorenchyma osmotic pressure increased. Although nocturnal osmotic pressure increases and transpiration for both species were minimal in the field under dry conditions, diel changes in the deuterium: hydrogen ratio (expressed as ΔD) were similar for the water-storage parenchyma and the chlorenchyma. Such indication of [substantial mixing of water between the tissues over a 24-h cycle was more evident under wet conditions in the field. For A. deserti , ΔD then increased by 32%o from the afternoon to midnight and was essentially identical in the water-storage parenchyma and the chlorenchyma. For F. acanthodes , the diel changes in ΔD were one-third those of A. deserti , and ΔD was always slightly higher for the chlorenchyma than for the water-storage parenchyma, apparently reflecting the lower surface-to-volume ratio of A. deserti. In summary, data obtained using radioactive and stable isotopes strongly supported model predictions concerning diel cycles of internal water distribution for these CAM species. 相似文献
7.
High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature 总被引:3,自引:0,他引:3
Zhenmin Lu John W. Radin Edgar L. Turcotte Richard Percy Eduardo Zeiger 《Physiologia plantarum》1994,92(2):266-272
Advanced lines of Pima cotton ( Gossypium barbadense L.) bred for higher yield potential and heat resistance have higher stomata conductance and smaller leaf areas than those of obsolete lines. In controlled experiments, five commercial lines of Pima cotton having increasing lint yield and heat resistance showed a gradient of increasing stomatal conductance and decreasing leaf size. In field experiments, heat-sensitive, low yield Pima lines showed a lower stomatal conductance than high yielding, advanced lines. This indicates that selection for high yield potential and heat resistance has imposed a selection pressure for higher stomatal conductance and smaller leaf areas. The higher stomatal conductance and smaller leaf area in the advanced lines resulted in a lower leaf temperature in both controlled environments and in the field. The largest leaf temperature differences between obsolete and advanced lines were observed in the afternoon. These differences coincided with the largest differences in stomatal conductance and the highest air temperatures. Measurements of stomatal conductance and leaf temperature in field-grown progeny from a cross between the advanced line, Pima S-6. and the obsolete line, Pima 32, showed that genetically determined differences in stomatal conductance resulted in corresponding differences in leaf temperature. None of the altered physiological traits were selected for in the breeding program, indicating that selection for the desired agronomic traits imposed selection pressures on the altered physiological traits. The increases in stomatal conductance and decreases in leaf area could represent an integrated response to selection pressures on enhanced evaporative cooling, ensuing from selection for heat resistance. 相似文献
8.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant. 相似文献
9.
土壤盐分对棉花功能叶气体交换参数和叶绿素荧光参数日变化的影响 总被引:2,自引:0,他引:2
2007—2008年在南京农业大学牌楼试验站进行盆栽试验,选择耐盐品种中棉所44和盐敏感品种苏棉12号为材料,试验设置5个土壤盐分水平(0、0.35%、0.60%、0.85%和1.00%),研究土壤盐分对棉花功能叶气体交换参数和叶绿素荧光参数日变化的影响.结果表明:随土壤盐分水平的升高,棉花功能叶中Na+、C l-和Mg2+含量升高,K+和Ca2+含量降低.低于0.35%盐分处理对叶片气体交换参数和叶绿素荧光参数的影响较小,高于0.35%的盐分处理显著降低了棉花功能叶的净光合速率(Pn),提高了棉花功能叶对日间光辐射强度和温度的敏感程度,导致光温抑制现象加重,并改变了Pn和气孔导度(Gs)的日变化趋势,使其由单峰曲线逐渐变为持续下降趋势.随日间光辐射强度和温度的变化,棉花叶片最大光化学效率(Fv/Fm)、光系统Ⅱ(PSⅡ)量子产量(ΦPSⅡ)和光化学猝灭系数(qP)的日变化趋势呈V型曲线,最低值出现在12:00—13:00,非光化学猝灭系数(qN)的日变化趋势呈单峰曲线;盐分处理降低了棉花功能叶Fv/Fm、ΦPSⅡ和qP,提高了qN,且增大了其变化幅度.耐盐品种中棉所44功能叶片中较低的Na+、C l-含量及... 相似文献
10.
1. We tested the hypothesis that the net partitioning of dry mass and dry mass:area relationships is unaltered when plants are grown at elevated atmospheric CO2 concentrations.
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO2 mol–1 when grown hydroponically in controlled-environment cabinets.
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO2 . Leaf mass ratio was higher in plants of B. perennis and D. glomerata grown at elevated CO2 .
4. Whilst these data suggest that CO2 alters the net partitioning of dry mass and dry mass:leaf area relationships, allometric comparisons of the components of dry mass and leaf area suggest at most a small effect of CO2 . CO2 changed only two of a total of 12 allometric coefficients we calculated for the three species: ν relating shoot to root dry mass was higher in D. glomerata , whilst ν relating leaf area to total dry mass was lower in T. repens .
5. CO2 alone has very little effect on partitioning when the size of the plant is taken into account. 相似文献
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO
4. Whilst these data suggest that CO
5. CO
11.
Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions 总被引:2,自引:2,他引:2
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment. 相似文献
12.
A. G. Peterson J. T. Ball Y. Luo C. B. Field P. S. Curtis K. L. Griffin C. A. Gunderson R. J. Norby D. T. Tissue M. Forstreuter A. Rey C. S. Vogel & Cmeal Participants 《Plant, cell & environment》1999,22(9):1109-1119
Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis. 相似文献
13.
Cotton (Gossypium hirsutum L. cv. Deltapine 15/21) plants were precultured for 19 to 25 days under controlled climatic conditions in nutrient solutions with different levels of Zn. With the onset of visual Zn-deficiency symptoms the pH of the nutrient solution decreased from 6.0 to about 5.0. In contrast, Zn-sufficient plants raised the pH of the nutrient solution to about 7.0. In short-term studies it could be demonstrated that the Zn nutritional status of the plants remarkably influenced the uptake and translocation rates of mineral nutrients. Compared to Zn-sufficient plants, P uptake rate in severely Zn-deficient plants was increased by a factor of 2 to 3, whereas the uptake rates of K, Ca and particularly NO3 decreased. The accumulation of P in the roots of Zn-deficient plants was either not affected or even lower than in Zn-sufficient plants. Thus, Zn deficiency had a specific enhancement effect on root to shoot transport of P. This enhancement effect of Zn deficiency on uptake and transport of P was similar at nutrient solution pH values of 7.0 and 5.8; i.e. it was not the result of acidification of the nutrient solution. After application of 36CI, 86Rb and 32P to plant stems, basipetal transport of 36CI and 86Rb was not affected by the Zn nutritional status of the plants. However, in Zn-deficient plants, only 7.8% of the 32P was translocated basipetally compared to 34% in the Zn-sufficient plants. A resupply of Zn for 19 h to Zn-deficient plants enhanced basipetal 32P transport. The results indicate that a feedback mechanism in the shoots is impaired in Zn-deficient plants which controls the P uptake by roots and especially the P transport from roots to shoots. As a result of this impairment toxic concentrations of P accumulate in the leaves. The mechanism responsible is likely the retranslocation of P in the phloem from shoots to roots. 相似文献
14.
两种防治措施下转Bt基因棉田绿盲蝽的发生与为害 总被引:11,自引:1,他引:11
2002年在河北省南皮县对2种防治措施下转Bt基因田绿盲蝽LyguslucorumMayre的发生与为害进行的系统调查表明,采用生物农药和低毒化学农药防治4次,Bt棉田绿盲蝽的发生为害较为严重,9月上旬发生高峰期种群密度为7.2头10株,显著高于防治指标,第2代绿盲蝽为害高峰期,叶片被害率为19.4%;采用当地棉农化学防治方法施用农药7次,Bt棉田绿盲蝽发生为害较轻,发生高峰期(8月中旬)种群密度为2.0头10株,第2代绿盲蝽为害高峰期,叶片被害率为4.8%。讨论指出绿盲蝽已成为转Bt基因棉生产中的重要问题,应加快绿盲蝽在转Bt基因棉田的生态调控研究。 相似文献
15.
'Photoinhibition' of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature 总被引:4,自引:0,他引:4
The influence of irradiance on photosynthesis under natural conditions was studied in aseasonal Singapore using three Heliconia taxa: H. rostrata, H. psittacorum × H. spathocircinata cv. Golden Torch and H. psittacorum cv. Tay. When grown under full sunlight, all three heliconias exhibited reduced phatosynthetic capacities and lowered chlorophyll content per leaf area as compared with those grown under intermediate and deep shade. A marked decrease in the chlorophyll fluorescence Fv/Fm ratio and an increase in photochemical quenching (1- qp) and non-photochemical quenching (qN) were observed in upper leaves of plants grown under full sunlight. Increases in qN suggest that ‘photoinhibition’ (decreases in Fv/Fm) in Heliconia grown under natural tropical conditions are probably due to photoprotective energy dissipation processes. The quantum yield, the maximum photosynthetic rate, Fv/Fm and the chlorophyll content of upper leaves were lower than those of lower leaves on the same plants grown under full sunlight. Similarly, lower values were obtained for the tip (sun) portion than for the base (shaded) portion of the leaves. The changes in Fv/Fm and in the levels of (1 –qp) in leaves grown under intermediate and deep shade were negligible in plants during the course of day. However, there was a steep decrease in Fv/Fm and an increase in the levels of (1 –qp), along with an increase in incident light in the sun leaves. The lowest Fv/Fm and the highest level of (1 –qp) indicated minimum PSII efficiency at midday in full sun. These results indicate that, in Heliconia, the top leaves (particularly leaf tips) experienced sustained decreases in PSII efficiency upon exposure to full sunlight. Although all three taxa exhibited sustained decreases in photosynthetic capacity in full sunlight, the sun leaves of ‘Tay’ showed higher photosynthetic capacity than those of the other two taxa. This could be due, at least in part, to the vertical leaf angle and smaller lamina area. When the upright leaves of ‘Tay’ were constrained to a horizontal angle, they exhibited lower PSII efficiency (FvIFm ratio), while horizontal leaves of ‘Rostrata’ and ‘Golden Torch’ inclined lo near-vertical angles showed increased efficiency. Thus, an increase in leaf angle helps to achieve a reduction in the sustained decrease in PSII efficiency by decreasing the levels of incident sunlight and subsequently the leaf temperature. 相似文献
16.
17.
Leaves of 12-week-old tobacco plants (Nicotiana tabacum L. cv. Samsun NN) were infiltrated with suspensions of Pseudomonas syringae pv, pisi (DSM 50291) to induce hypersensitive reaction (HR). Cotyledons of 2-week-old cotton plants (Gossypium hirsutum L. cv. Acala 442 and Coker BR) were infiltrated with Xanthomonas campestris pv. malvacearum (race 10) to induce the disease. In tobacco, HR-related increases in NH+4 levels started within 2 h after infection and continued up to the time of tissue decay. Increase of NH+4 and especially K+ efflux were detected in intercellular washing fluids (IWF). Antibiotics stopped and later reverted NH+4 production and K+ efflux, but only if applied within 2 h after infection. When 10 mM NH+4 was injected into leaves, it was rapidly consumed from the IWF, and also, although more slowly, within the leaf cells. The concomitant K+ efflux was strong but delayed, and most of the K+ was reabsorbed after 2 h. Bacterial cell multiplication in HR stopped before the appearance of HR symptoms and cell necrosis. In the compatible reaction in cotton cotyledons, both NH+4accumulation and K+ efflux proceeded much more slowly than in the HR with tobacco, and bacteria continued to multiply until general cell necrosis occurred. The compatible reaction developed faster in constant darkness than in a light/dark rhythm. Bacterial enzymes produced NH+4, mainly from proteins of host cells, in both light and darkness. Continuous light delayed the main peak of both NH+4 production and K+ efflux. High CO2 concentration inhibited both processes, thus indicating that photorespiration plays a role in enhancing the release of free ammonium during bacterial pathogenesis. This is supported by shifts in the pattern of amino acids. The results demonstrate the accelerating and aggravating effect of ammonium in pathogenesis and HR, though ammonium is not the primary agent. 相似文献
18.
Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions 总被引:1,自引:0,他引:1
Background and Aims
Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture.Methods
Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions.Key Results
Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa.Conclusions
Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting. 相似文献19.
Two direct but independent approaches were developed to identify the average δ18O value of the water fraction in the chloroplasts of transpiring leaves. In the first approach, we used the δ18O value of CO2 in isotopic equilibrium with leaf water to reconstruct the δ18O value of water in the chloroplasts. This method was based on the idea that the enzyme carbonic anhydrase facilitates isotopic equilibrium between CO2 and H2O predominantly in the chloroplasts, at a rate that is several orders of magnitude faster than the non-catalysed exchange in other leaf water fractions. In the second approach, we measured the δ18O value of O2 from photosynthetic water oxidation in the chloroplasts of intact leaves. Since O2 is produced from chloroplast water irreversibly and without discrimination, the δ18O value of the O2 should be identical to that of chloroplast water. In intact, transpiring leaves of sunflower (Helianthus annuus cv. giant mammoth) under the experimental conditions used, the average δ18O value of chloroplasts water was displaced by 3—10 % (depending on relative humidity and atmospheric composition) below the value predicted by the conventional Craig & Gordon model. Furthermore, this δ18O value was always lower than the δ18O value that was measured for bulk leaf water. Our results have implications for a variety of environmental studies since it is the δ18O value of water in the chloroplasts that is the relevant quantity in considering terrestrial plants influence on the δ18O values of atmospheric CO2 and O2, as well as in influencing the δ18O of plant organic matter. 相似文献
20.
Control of plant growth by nitrogen: differences between cereals and broadleaf species 总被引:6,自引:3,他引:6
JOHN W. RADIN 《Plant, cell & environment》1983,6(1):65-68
Abstract. In four dicotyledonous species low levels of N strongly inhibited leaf expansion during the day but had little or no effect at night. In contrast, daytime and night-time expansion were equally affected in four cereal species. The results support the general concept that in dicotyledons, N controls leaf expansion through its effects on hydraulic conductivity. In such N-limited plants, water deficits generated by transpiration may inhibit daytime cell expansion. In cereals, cell expansion and transpiration occur in separate zones of the leaf and are apparently unrelated.
Growth analysis showed that low levels of N inhibited leaf area growth more strongly in dicotyledons than in cereals, but had similar effects on net assimilation rates of plants in the two groups. As a result, dry matter production was more efficient in cereals than in dicotyledons when N was limiting. 相似文献
Growth analysis showed that low levels of N inhibited leaf area growth more strongly in dicotyledons than in cereals, but had similar effects on net assimilation rates of plants in the two groups. As a result, dry matter production was more efficient in cereals than in dicotyledons when N was limiting. 相似文献