首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated a frontal-parietal network in the top-down control of attention. However, little is known about the timing and sequence of activations within this network. To investigate these timing questions, we used event-related electrical brain potentials (ERPs) and a specially designed visual-spatial attentional-cueing paradigm, which were applied as part of a multi-methodological approach that included a closely corresponding event-related fMRI study using an identical paradigm. In the first 400 ms post cue, attention-directing and control cues elicited similar general cue-processing activity, corresponding to the more lateral subregions of the frontal-parietal network identified with the fMRI. Following this, the attention-directing cues elicited a sustained negative-polarity brain wave that was absent for control cues. This activity could be linked to the more medial frontal–parietal subregions similarly identified in the fMRI as specifically involved in attentional orienting. Critically, both the scalp ERPs and the fMRI-seeded source modeling for this orienting-related activity indicated an earlier onset of frontal versus parietal contribution (∼400 versus ∼700 ms). This was then followed (∼800–900 ms) by pretarget biasing activity in the region-specific visual-sensory occipital cortex. These results indicate an activation sequence of key components of the attentional-control brain network, providing insight into their functional roles. More specifically, these results suggest that voluntary attentional orienting is initiated by medial portions of frontal cortex, which then recruit medial parietal areas. Together, these areas then implement biasing of region-specific visual-sensory cortex to facilitate the processing of upcoming visual stimuli.  相似文献   

2.

Background

In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear.

Methodology/Principal Findings

We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively.

Conclusions

The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.  相似文献   

3.
Ristic J  Giesbrecht B 《PloS one》2011,6(9):e24436
Successful completion of many everyday tasks depends on interactions between voluntary attention, which acts to maintain current goals, and reflexive attention, which enables responding to unexpected events by interrupting the current focus of attention. Past studies, which have mostly examined each attentional mechanism in isolation, indicate that volitional and reflexive orienting depend on two functionally specialized cortical networks in the human brain. Here we investigated how the interplay between these two cortical networks affects sensory processing and the resulting overt behavior. By combining measurements of human performance and electrocortical recordings with a novel analytical technique for estimating spatiotemporal activity in the human cortex, we found that the subregions that comprise the reflexive ventrolateral attention network dissociate both spatially and temporally as a function of the nature of the sensory information and current task demands. Moreover, we found that together with the magnitude of the early sensory gain, the spatiotemporal neural dynamics accounted for the high amount of the variance in the behavioral data. Collectively these data support the conclusion that the ventrolateral attention network is recruited flexibly to support complex behaviors.  相似文献   

4.
Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem.  相似文献   

5.
The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site's ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network.  相似文献   

6.

Background

Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL) and premotor cortex (PM), and their activation seems to take place in parallel.

Methodology

The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS) during planning of reaching movements under visual guidance.

Principal Findings

A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation.

Conclusions

This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.  相似文献   

7.
In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory "cue" signaling the location where a subsequent "target" sound was likely to be presented. The target was occasionally replaced by an unexpected "novel" sound in the uncued ear, to trigger involuntary attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs. 1500-Hz pure-tone "standard" trains. The sound of clustered fMRI acquisition (starting at t?=?7.82 sec) served as a controlled trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention shifting activated the superior intra--parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found -evidence for a frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets activated much wider areas of superior temporal auditory cortices than shifting cues.  相似文献   

8.
Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL) is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM) remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI) data in normal participants, and evaluated their attention performance using attention network test (ANT), which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS) was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.  相似文献   

9.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

10.
Face processing relies on a distributed, patchy network of cortical regions in the temporal and frontal lobes that respond disproportionately to face stimuli, other cortical regions that are not even primarily visual (such as somatosensory cortex), and subcortical structures such as the amygdala. Higher-level face perception abilities, such as judging identity, emotion and trustworthiness, appear to rely on an intact face-processing network that includes the occipital face area (OFA), whereas lower-level face categorization abilities, such as discriminating faces from objects, can be achieved without OFA, perhaps via the direct connections to the fusiform face area (FFA) from several extrastriate cortical areas. Some lesion, transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) findings argue against a strict feed-forward hierarchical model of face perception, in which the OFA is the principal and common source of input for other visual and non-visual cortical regions involved in face perception, including the FFA, face-selective superior temporal sulcus and somatosensory cortex. Instead, these findings point to a more interactive model in which higher-level face perception abilities depend on the interplay between several functionally and anatomically distinct neural regions. Furthermore, the nature of these interactions may depend on the particular demands of the task. We review the lesion and TMS literature on this topic and highlight the dynamic and distributed nature of face processing.  相似文献   

11.
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.  相似文献   

12.
Voluntarily shifting attention to a location of the visual field improves the perception of events that occur there. Regions of frontal cortex are thought to provide the top-down control signal that initiates a shift of attention, but because of the temporal limitations of functional brain imaging, the timing and sequence of attentional-control operations remain unknown. We used a new analytical technique (beamformer spatial filtering) to reconstruct the anatomical sources of low-frequency brain waves in humans associated with attentional control across time. Following a signal to shift attention, control activity was seen in parietal cortex 100–200 ms before activity was seen in frontal cortex. Parietal cortex was then reactivated prior to anticipatory biasing of activity in occipital cortex. The magnitudes of early parietal activations were strongly predictive of the degree of attentional improvement in perceptual performance. These results show that parietal cortex, not frontal cortex, provides the initial signals to shift attention and indicate that top-down attentional control is not purely top down.  相似文献   

13.
The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage.  相似文献   

14.
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.  相似文献   

15.
Parietal cortex and attention   总被引:9,自引:0,他引:9  
The parietal lobe forms about 20% of the human cerebral cortex and is divided into two major regions, the somatosensory cortex and the posterior parietal cortex. Posterior parietal cortex, located at the junction of multiple sensory regions, projects to several cortical and subcortical areas and is engaged in a host of cognitive operations. One such operation is selective attention, the process where by the input is filtered and a subset of the information is selected for preferential processing. Recent neuroimaging and neuropsychological studies have provided a more fine-grained understanding of the relationship between brain and behavior in the domain of selective attention.  相似文献   

16.
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.  相似文献   

17.
BACKGROUND: In the current study we compared the effects of temporal orienting of attention based on predictions carried by the intrinsic temporal structure of events (rhythm) and by instructive symbolic cues; and tested the degree of cognitive, strategic control that could be exerted over each type of temporal expectation. The experiments tested whether the distinction between exogenous and endogenous orienting made in spatial attention may extend to the temporal domain. TASK DESIGN AND MAIN RESULTS: In this task, a ball moved across the screen in discrete steps and disappeared temporarily under an occluding band. Participants were required to make a perceptual discrimination on the target upon its reappearance. The regularity of the speed (rhythmic cue) or colour (symbolic cue) of the moving stimulus could predict the exact time at which a target would reappear after a brief occlusion (valid trials) or provide no temporal information (neutral trials). The predictive nature of rhythmic and symbolic cues was manipulated factorially in a symmetrical and orthogonal fashion. To test for the effects of strategic control over temporal orienting based on rhythmic or symbolic cues, participants were instructed either to "attend-to-speed" (rhythm) or "attend-to-colour". Our results indicated that both rhythmic and symbolic (colour) cues speeded reaction times in an independent fashion. However, whilst the rhythmic cueing effects were impervious to instruction, the effects of symbolic cues were contingent on the instruction to attend to colour. FINAL CONCLUSIONS: Taken together, our results provide evidence for the existence of qualitatively separable types of temporal orienting of attention, akin to exogenous and endogenous mechanisms.  相似文献   

18.

Background

Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control.

Methodology/Principal Findings

We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons.

Conclusions/Significance

This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with—and perhaps directly derived from—motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements.  相似文献   

19.
Attentional processes are fundamental to good cognitive functioning of human operators. The purpose of this study was to analyze the activity of neuronal networks involved in the orienting attention and executive control processes from the perspective of diurnal variability. Twenty-three healthy male volunteers meeting magnetic resonance (MR) inclusion criteria performed the Stroop Color-Word task (block design) in the MR scanner five times/day (06:00, 10:00, 14:00, 18:00, 22:00 h). The first scanning session was scheduled 1–1.5 h after waking. Between MR sessions, subjects performed simulated driving tasks in stable environmental conditions, with controlled physical activity and diet. Significant activation was found in brain regions related to the orienting attentional system: the parietal lobe (BA40) and frontal eye-fields (FEFs). There were also activations in areas of the executive control system: the fronto-insular cortex (FIC), dorsal anterior cingulate cortex (dACC), presupplementary motor area (preSMA), supplementary motor area (SMA), basal ganglia, middle temporal (MT; BA21), and dorsolateral prefrontal cortex (DLPFC), as a part of the central executive network. Significant deactivations were observed in the rostral anterior cingulate cortex (rACC), posterior cingulate cortex (PCC), superior frontal gyrus (SF), parietal lobe (BA39), and parahippocampal that are thought to comprise the default mode network (DMN). Additionally, the activated regions included bilaterally lingual gyrus and fusiform gyrus. The insula was bilaterally deactivated. Visual attention controlled by the goal-oriented attention system and comprising top-down and bottom-up mechanisms, activated by Stroop-like task, turned out to be prone to diurnal changes. The study results show the occurrence of time-of-day–related variations in neural activity of brain regions linked to the orienting attentional system (left parietal lobe—BA40, left and right FEFs), simultaneously providing arguments for temporal stability of the executive system and default mode network. These results also seem to suggest that the involuntary, exogenous (bottom-up) mechanism of attention is more vulnerable to circadian and fatigue factors than the voluntary (top-down) mechanism, which appear to be maintained at the same functional level during the day. The above phenomena were observed at the neural level. (Author correspondence: )  相似文献   

20.
Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号