首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Signaling through hematopoietic cytokine receptors such as the erythropoietin receptor (EpoR) depends on the activation of a receptor-bound Janus kinase (JAK) and tyrosine phosphorylation of the cytoplasmic domain. To visualize the EpoR and elucidate structural requirements coordinating signal transduction, we probed the EpoR by inserting the green fluorescent protein (GFP) at various positions. We show that insertion of GFP in proximity to the transmembrane domain, either in the extracellular or the cytoplasmic domain, results in EpoR-GFP receptors incompetent to elicit biological responses in a factor-dependent cell line or in erythroid progenitor cells. Surprisingly, a receptor harboring GFP insertion in the middle of the cytoplasmic domain, and thereby separating the JAK2 binding site from the tyrosine residues, is capable of supporting signal transduction in response to ligand binding. Comparable with the wild type EpoR, but more efficient than a C-terminal EpoR-GFP fusion, this chimeric receptor promotes the maturation of erythroid progenitor cells and is localized in punctated endosome-like structures. We conclude that the extracellular, transmembrane, and membrane-proximal segment of the cytoplasmic domain form a rigid structural entity whose precise orientation is essential for the initiation of signal transduction, whereas the cytoplasmic domain possesses flexibility in adopting an activated conformation.  相似文献   

3.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors.  相似文献   

4.
Red blood cells are of vital importance for oxygen transport in vertebrates. Thus, their formation during development and homeostasis requires tight control of both progenitor proliferation and terminal red cell differentiation. Self renewal (i.e. long-term proliferation without differentiation) of committed erythroid progenitors has recently been shown to contribute to this regulation. Avian erythroid progenitors expressing the EGF receptor/c-ErbB (SCF/TGFalpha progenitors) can be induced to long-term proliferation by the c-ErbB ligand transforming growth factor alpha and the steroids estradiol and dexamethasone. These progenitors have not yet been described in mammals and their factor requirements are untypical for adult erythroid progenitors. Here we describe a second, distinct type of erythroid progenitor (EpoR progenitors) which can be established from freshly isolated bone marrow and is induced to self renew by ligands relevant for erythropoiesis, i.e. erythropoietin, stem cell factor, the ligand for c-Kit and the glucocorticoid receptor ligand dexamethasone. Limiting dilution cloning indicates that these EpoR progenitors are derived from normal BFU-E/CFU-E. For a detailed study, mEpoR progenitors were generated by retroviral expression of the murine Epo receptor in bone marrow erythroblasts. These progenitors carry out the normal erythroid differentiation program in recombinant differentiation factors only. We show that mEpoR progenitors are more mature than SCF/TGFalpha progenitors and also do no longer respond to transforming growth factor alpha and estradiol. In contrast they are now highly sensitive to low levels of thyroid hormone, facilitating their terminal maturation into erythrocytes.  相似文献   

5.
《The Journal of cell biology》1994,127(6):1743-1754
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.  相似文献   

6.
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.  相似文献   

7.
BACKGROUND: The interaction of different members of the hematopoietic growth factor receptor family may be relevant to the increased proliferation and the failure of differentiation that characterizes the myeloid leukemias. We recently demonstrated that a chimeric receptor (GMER) that is composed of the extracellular and transmembrane domains of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain (GMR alpha) and the cytoplasmic domain of the murine erythropoietin receptor mEpoR binds hGM-CSF with low affinity (3 nM) and confers both proliferative and differentiation signals to stably transfected murine Ba/F3 cells. MATERIALS AND METHODS: To investigate whether the common beta-subunit of the GM-CSF receptor (beta c) can interact with GMER, either the entire beta-subunit or a mutant, truncated beta-subunit that completely lacks the cytoplasmic domain (beta tr) was introduced into Ba/F3 cells that express GMER, and the binding of GM-CSF as well as proliferation and differentiation responses were measured. RESULTS: Scatchard analysis showed that both GMER + beta c and GMER + beta tr bound hGM-CSF with high affinity (Kd 40 pM to 65 pM). Proliferation assays showed that the maximum growth of cells expressing GMER + beta c was identical to that of cells with GMER alone. However, proliferation of the cells that expressed GMER + beta tr was reduced by 80-95% of GMER. Dose-response curves showed that the concentration of GM-CSF required for half-maximal growth was 0.5-5.0 pM for GMER + beta c and 0.5-5 nM for GMER and GMER + beta tr. The EpoR cytoplasmic domain of GMER also undergoes ligandinducible tyrosine phosphorylation. However, the tyrosine phosphorylation did not correlate with growth in cells expressing beta tr. Coexpression of beta c with GMER in Ba/F3 cells grown in hGM-CSF markedly enhanced beta-globin mRNA expression. CONCLUSIONS: These results indicate that beta c can transduce a unique signal in association with GMER to influence both proliferative and differentiation signal pathways.  相似文献   

8.
The cytokine Granulocyte–Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure–function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R α chain specifically interfered with EpoR signaling, an activity neither seen for the βc subunit of the receptor complex alone, nor for the α chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R α chain in defining cell type–specific functions of the GM-R.  相似文献   

9.
Yu Z  Liu W  Liu D  Fan L 《Cellular immunology》2006,241(1):32-37
This study was designed to investigate the regulatory role of soluble interleukin-6 receptor (sIL-6R) and interleukin-6 (IL-6) fusion protein (Hyper-IL-6) in the differentiation of human myeloid and erythroid progenitors by a serum-free liquid suspension culture system, using the human cord blood-derived CD34(+)CD38(-) cells as a target. We found that Hyper-IL-6 promoted the generation of CD15(+) granulocytic and CD14(+) monocytic cells and suppressed that of CD14(-)CD1a(+) dendritic cells from CD36(-)CD15(-)CD14(-)CD1a(-)IL-6R(+) myeloid progenitors. Conversely, CD34(+)CD38(-) cell-derived early erythroid progenitors were negative for IL-6R expression. Hyper-IL-6 potentiated the generation of CD36(+)glycophorinA(high) mature erythroid cells from the IL-6R(-) early erythroid progenitors. Our results indicate that Hyper-IL-6 augments the generation of CD15(+) granulocytic, CD14(+) monocytic and CD36(+)glycophorinA(high) cell and suppresses that of CD14(-)CD1a(+) dendritic cells.  相似文献   

10.
11.
Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.  相似文献   

12.
13.
The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.  相似文献   

14.
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.  相似文献   

15.
Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.  相似文献   

16.
H Zang  K Sato  H Nakajima  C McKay  P A Ney  J N Ihle 《The EMBO journal》2001,20(12):3156-3166
The erythropoietin receptor (EpoR) is required for the proliferation and survival of committed erythroid lineage cells. Previous studies have utilized receptor mutations to show the requirement for the distal half of the cytoplasmic domain of the EpoR and receptor tyrosines for activation of signaling pathways potentially critical to Epo function. To extend these studies to in vivo erythropoiesis, we have created two mutant strains of mice. One strain (H) contains a truncation of the distal half of the cytoplasmic domain, while the second strain (HM) contains the same truncation as well as the mutation of the residual tyrosine (Y(343)) to a phenylalanine. Strikingly, both strains of mice are viable, with only slight alterations in constitutive erythropoiesis or in in vitro assays of red cell lineage function. Challenging H mutant mice with continuous injections of Epo results in an erythrocytosis that is not seen in HM mice. The results demonstrate that neither the distal region nor receptor tyrosines are essential for in vivo EpoR function, but contribute to receptor function in a subtle manner.  相似文献   

17.
Several recently identified chemokines, Lkn-1, CKbeta8-1, MRP-2, and Mu C10 (MRP-1), are classified as C6 beta-chemokines. All of these chemokines have been found to suppress colony formation by bone marrow (BM) myeloid progenitors. Since cord blood (CB), like BM, contains CD34-positive cells, we examined the effects of these chemokines on CD34+ cells isolated from human CB. Lkn-1 and CKbeta8-1 suppressed colony formation by multi-potential granulocyte erythroid mega-karyocyte macrophages (CFU-GEMM), granulocyte-macrophages (CFU-GM), and erythroid (BFU-E) cells among the CD34+ cells from CB. CC chemokine receptor 1 (CCR1) that is known to be a receptor for Lkn-1 and CKbeta8-1 in neutrophils, monocytes, and lymphocytes, was also present on the surface of CD34+ cells from CB. Taken together these results suggest that Lkn-1 and CKbeta8-1 are active in inhibiting myeloid progenitor cells from both BM and CB. Macrophage inflammatory protein related protein-2 (mMRP-2) and Mu C10 (mMRP-1), which are murine C6 beta-chemokines, also inhibited colony formation by CB CD34+ cells. The inhibitory activity of these chemokines suggests that they may protect hematopoietic progenitors from the cytotoxic effects of the antiblastic drugs used in cancer therapy.  相似文献   

18.
The cytoplasmic domain of the erythropoietin receptor (EpoR) contains a region, proximal to the transmembrane domain, that is essential for function and has homology with other members of the cytokine receptor family. To explore the functional significance of this region and to identify critical residues, we introduced several amino acid substitutions and examined their effects on erythropoietin-induced mitogenesis, tyrosine phosphorylation, and expression of immediate-early (c-fos, c-myc, and egr-1) and early (ornithine decarboxylase and T-cell receptor gamma) genes in interleukin-3-dependent cell lines. Amino acid substitution of W-282, which is strictly conserved at the middle portion of the homology region, completely abolished all the functions of the EpoR. Point mutation at L-306 or E-307, both of which are in a conserved LEVL motif, drastically impaired the function of the receptor in all assays. Other point mutations, introduced into less conserved amino acid residues, did not significantly impair the function of the receptor. These results demonstrate that conserved amino acid residues in this domain of the EpoR are required for mitogenesis, stimulation of tyrosine phosphorylation, and induction of immediate-early and early genes.  相似文献   

19.
Two and three color flow cytometry of normal human bone marrow was used to identify CD34+ progenitor cells and examine their binding to the plant lectin Ulex europaeus I (Ulex). In normal bone marrow, 48.48 +/- 17.4% of the CD34+ cells bind to Ulex. Two color flow cytometry was used to sort CD34 + cells, and subsets of CD34+ cells, CD34+ Ulex+ and CD34+ Ulex-. These populations were sorted into colony assays to assess myeloid (CFU-GM) and erythroid (BFU-E) progenitors. The CD34+ Ulex+ subset was 84 +/- 14% BFU-E colonies (mean +/- S.D.) and had the highest cloning efficiency of 28 +/- 13%. Three color analysis of CD34+ Ulex+ cells showed staining with other erythroid (CD71, GlyA) antibodies and lack of stain. ing with myeloid (CD13, CD45RA) antibodies. These studies confirmed the erythroid characteristics of this subpopulation.  相似文献   

20.
KIT and erythropoietin receptor (EpoR) mediated co-signaling is essential for normal erythroid cell expansion, however the intracellular signals that contribute to cooperative signaling are poorly understood. Here, we examined the role of intracellular tyrosine residues in KIT and EpoR cooperation by co-expressing tyrosine (Y) to phenylalanine (F) and deletion mutants of KIT and EpoR in 32D cells. Of the four EpoR mutants examined, only EpoR-Y343 induced proliferation to near wildtype EpoR levels. A modest increase in the growth was also observed in 32D cells expressing the EpoR-Y343F; however neither EpoR-W282R nor EpoR-F8 showed any increase in growth over baseline. Biochemical analysis revealed that EpoR-Y343 induced the activation of Stat5, PI-3Kinase/Akt and MAP kinase Erk1/2 to near wildtype EpoR levels, while the remaining mutants failed to activate any of these signals. Interestingly, none of the EpoR mutants cooperated with WT KIT, although EpoR-Y343 showed a modest increase in co-signaling. Loss of seven tyrosine residues in KIT (KIT-F7) completely abrogated EpoR induced co-signaling. Restoring the Src kinase binding sites in KIT-F7 alone or together with the PI3Kinase binding site restored KIT induced signals as well as co-signals with WT EpoR, although restoring the Src kinase binding sites along with the PLC-gamma binding site repressed both KIT induced signaling as well as co-signaling with WT EpoR. Taken together, these results suggest that KIT and EpoR mediated co-signaling requires intracellular tyrosine residues and tyrosine residues that bind Src kinases in the KIT receptor appear to be sufficient for restoring both KIT signaling as well as co-signaling with EpoR. In contrast, restoration of the PLC-gamma binding site in the context of Src binding sites appears to antagonize the positive signals induced via the Src kinase binding sites in the KIT receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号