首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, alpha-Amylase originating from Bacillus subtilis (liquefying type) was immobilized on partially imidoesterized polyacrylonitrile (PAN) by covalent bonding. For the preparation of immobilized alpha-amylase, which has a high activity and high stability to repeated use, the optimum conditions for the preparation reaction were investigated. The optimum conditions for the preparation reaction were quantified on the basis of the enzymatic activity, the preservation of the activity during repeated use in batch process and the protein content on the support. Further-more, enzymatic properties of immobilized alpha-amylase prepared at optimum conditions were compared with the native enzyme. The optimum temperature and reaction time for the imidoes-terification reaction were 30 degrees c and 6 h, respectively, whereas those of the amidinatin reaction were 30-40 degrees C and more than 3 h, respectively; the optimum pH range was 9-10. Immobilized alpha-amylase prepared at the optimum conditions was very stable against the repeated use and had more than 90% of relative to activity of the first use after the tenth procedure. The initial reaction rate of immobilized alpha-amylase was lower than native alpha-amylase, but same amount of reducing sugars were produced after the reaction passed for more than 90 min. The immobilized alpha-amylase was less stabel at the high temperature and the more basic media. However, after long incubation time, immobilized alpha-amylase was more stable than the native enzyme in exposure to heat and a storng base.  相似文献   

2.
Polymethylglutamate (PMG), a synthetic polypeptide, was used as a new carrier to immobilize urease (EC 3.5.1.5) and uricase (EC 1.7.3.3) by the azide method. The enzymes could be immobilized onto PMG in various forms, such as film, fiber, coating on various beads, and a silicon tube. The retained activities of the immobilized enzymes were excellent (more than 95%), therefore it was possible to immobilized almost all activities of the enzymes added in the coupling mixtures. Heat stabilities of the resulting immobilized enzymes were markedly improved, while the optimal pH and Km values remained almost unchanged. The urease immobilized on the PMG-coated glass beads packed in a column, was found to retain its activity more than 80% of the initial value, even after the occasional use for a year. In view of the improved retained activities and stabilities of the immobilized enzymes, PMG may therefore be a very versatile matrix for the immobilized enzymes.  相似文献   

3.
The immobilization of aminoacylase (N-acylamino acid amidohydrolase, EC 3.5.1.14) was investigated by using tannin immobilized on aminohexyl cellulose. The most active immobilized aminoacylase was obtained when aminoacylase was adsorbed to the immobilized tannin in a weak alkaline medium containing sodium chloride and n-butanol at 37 degrees C. The activity of the immobilized tannin-aminoacylase complex per unit volume was five times higher than that of the DEAE-Sephadex-aminoacylase complex used for industrial production of L-amino acids in our plants. The half-life of the immobilized tannin-aminoacylase complex was 20 days under continuous operation at a high concentration of substrate; on the contrary, that of the DEAE-Sephadex-aminoacylase complex was 0.5 days.  相似文献   

4.
Summary Bovine liver aminolaevulate dehydratase (ALAD) has been chemically attached to Sepharose 4B and its properties have been studied. The optimal conditions for coupling have been determined. It was found that the immobilized enzyme retained a significant percentage of the activity of the free enzyme. The coupling yield was rather high. The insolubilized enzyme requires both anaerobiosis and a thiol activator for maximal activity. It can be stored at 4 °C for long periods with little loss of activity and it can be repeatedly used without alteration of its enzymic capacity. Attachment of ALA-D to the gel has led to an enhanced thermal stability. pH optima of free and bound enzyme was the same while a small decrease in the Km of the matrix bonded ALA-D as compared to that of the soluble enzyme was observed. The use of the fixed-ALA-D for the preparation of PBG is described.Dedicated to Professor Luis F. Leloir on occasion of his 70th Birthday.  相似文献   

5.
Flavokinase (ATP: riboflavin 5'-phosphotransferase, EC 2.7.1.26) purified from rat liver by affinity chromatography, has been immobilized by amide linkage to omega-aminoalkyl-agarose beads. The immobilized enzyme differs from the soluble enzyme in having greater stability, slightly higher Km for the substrates, riboflavin and ATP, a broader pH optimum, and a lower energy of activation. These results suggest that the immobilized enzyme is influenced by the microenvironment of the bead and is subject to some degree of internal diffusional limitation. A small (3 ml), continuous, plug-flow reactor prepared with immobilized flavokinase effects 50% conversion of riboflavin to riboflavin 5'-phosphate (FMN) with a flow rate of 0.16 ml/min, which corresponds to an output of 5 nmol FMN/min. Immobilized flavokinase is effective for phosphorylating riboflavin and numerous riboflavin analogs and provides a facile method for preparing exclusively, unlike other synthetic methods, the 5'-phosphates.  相似文献   

6.
7.
Studies on the thermal inactivation of immobilized enzymes   总被引:1,自引:0,他引:1  
The thermal inactivation of a great number of immobilized enzymes shows a biphasic kinetics, which distinctly differs from the first-order inactivation kinetics of the corresponding soluble enzymes. As shown for alpha-amylase, chymotrypsin, and trypsin covalently bound to silica, polystyrene, or polyacrylamide, the dependence of the remaining activities on the heating time can be well described by the sum of two exponential terms. To interpret this mathematical model function, the catalytic properties of immobilized enzymes (number of active sites in silica-bound trypsin, K(M) and E(a) values in silica-bound alpha-amylase and chymotrypsin) at different stages of inactivation and the influence of various factors (coupling conditions, addition of denaturants or stabilizers, etc.) on the thermal inactivation of silica-bound alpha-amylase were studied. Furthermore, conformational alterations in the thermal denaturation of spin-labeled soluble and silica-bound beta-amylase were compared by electron spin resonance (ESR) studies. The results suggest that the biphasic inactivation kinetics reflects two different pathways according to which catalytically identical enzyme molecules are predominantly inactivated.  相似文献   

8.
A comparative study of the ligand-binding properties of human serum albumin was performed by the technique of affinity chromatography with the protein attached to immobilized Cibacron Blue F3GA (Blue Sepharose), or covalently immobilized on Sepharose. The binding strength of octanoate, decanoate and dodecanoate is much weaker when human serum albumin is attached to immobilized Cibacron Blue, indicating that the binding sites for fatty acids are involved in the attachment of human serum albumin to immobilized Cibacron Blue. The results revealed additional alterations of the ligand binding when human serum albumin was attached to immobilized Cibacron Blue, involving sites outside of the binding domains of fatty acids. Thus the stereoselective binding of L-tryptophan was abolished, and the resolution of the warfarin enantiomers was impaired. However, the binding strength of warfarin and salicylic acid was rather close to the values observed with human serum albumin covalently immobilized on Sepharose. It is suggested that the availability of the binding sites for L-tryptophan, warfarin and salicylic acid is partially blocked by the complex between albumin and the dye without direct participation in the complex-formation. An alternative interpretation involves an allosteric mechanism brought about by complex-formation between serum albumin and the immobilized Cibacron Blue.  相似文献   

9.
The temperature-induced unfolding of alpha-chymotrypsin and of chymotrypsin covalently bound to two soluble transparent carriers, dextran and a copolymer of maleic acid anhydride and acrylic acid, has been studied by tryptophan fluorescence emission, circular dichroic and kinetic measurements. It has been shown that the structural and functional properties of the enzyme when bound to the anionic copolymer are strongly influenced by electrostatic interactions. A number of reference experiments with anionic polyelectrolytes and the hydrogenated monomers of the copolymer suggest that these changes are brought about by the cooperative ion pair formation between protein and polyanionic matrix.  相似文献   

10.
11.
Papain and lipase were immobilized on derivatized Sepharose 4-B. The activated agarose had a binding capacity of 1.2 micronmol amino groups/ml packed agarose or 17 mg proteins/g dry agarose. The immobilized enzyme preparations were tested for the effects of pH of assay, temperature of assay, and substrate concentrations. The effect of 6M urea on the activity of papain was also determined. Soluble forms of the enzymes were used for comparison. Immobilization of the enzymes resulted in slightly different pH and temperature optima for activities. For immobilized papain Km(app) was similar to the one observed with soluble papain. Immobilization of lipase, however, cause a decrease in Km values. The immobilized enzyme preparations were stable when stored at 4 degrees C and pH 7.5 for periods up to eight months. The soluble enzymes lost their activity within 96 hr under similar storage conditions. Immobilized papain did not lose any activity after treatment with 6M urea for 270 min, whereas soluble papain lost 81% of its activity after the urea treatment, indicating that the immobilization of papain imparted structural and conformational stability to this enzyme.  相似文献   

12.
Immobilized glucoamylase, invertase, and β-galactosidase were prepared by using N-vinylpyrrolidone monomer (VP) under γ-ray irradiation. The enzyme-VP solutions were gelled by irradiation with 2.9 Mrad and the added enzymes were almost completely entrapped. Activity losses on entrapping were 55% for the VP-glucoamylase gel, and more than 90% in the case of VP-invertase and VP-β-galactosidase gels. No leakage of enzyme from these gels could be detected within 1 hr. The VP-glucoamylase gel was capable of hydrolyzing dextrin (mol wt 10,400) to glucose and the glucose equivalent was equal to that obtain able with native enzyme. The optimum temperature, heat stability, pH activity curve, and pH stability of VP-glucoamylase gel were slightly inferior to those of native enzyme, while Km was a little larger than that of native enzyme.  相似文献   

13.
14.
Preparation and properties of urease chemically attached to nylon tube   总被引:7,自引:0,他引:7  
  相似文献   

15.
The covalent immobilization of yeast invertase with glutaraldehyde at activated carbon, modified preliminarily by urea and dimethyl formamide treatment, has been established. Some physicochemical properties of the immobilized and native enzyme in water and water-organic solutions have been studied. Hydrolytic, as well as transferase enzyme characteristics have changed after immobilization. The optimal conditions for hydrolytic and transferase activity of immobilized invertase are pH 6.0 and 7.0, respectively. The optimum temperature for the immobilized enzyme is 30°C. The conversion degree of isoamyl alcohol depends on the substrate and enzyme concentrations in medium, holdup time and organic phase quantity in the reaction medium.  相似文献   

16.
Immobilization of aminoacylase from Streptoverticillium olivoreticuli by incorporation into acrylamide gel has been investigated. The data showed that the process should be carried out at constant pH. Thermal inactivation of the immobilized enzyme under the reaction conditions was studied. The kinetics of enzymatic stereospecific deacylation of N-acetyl-DL-phenylalanine was analyzed. The results of this study may be used in the synthesis of amino acid enantiomers.  相似文献   

17.
Summary Papain was covalently immobilized on both natural wood chip and cotton without substantial loss of enzymic activity, and its optimum pH was 6–10; optimum temperature, 67°C. The immobilized papain showed high activity for hydrolysis of beer peptide and was used in treatment of beer for 28 days without loss of activity.  相似文献   

18.
Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-dimethylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5°C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50°C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature.  相似文献   

19.
20.
A method of enzyme immobilization by graft copolymerization on polysaccharides is reported. Glycidylmethacrylate was used as a vinylating reagent and the reaction product with enzymes (HRP, GOD, Am, ChT) was copolymerized with different matrices (cellulose, Sepharose, Sephadex, Starch). Various factors affect the final activity of copolymers; these include the redox system, the type of support, and the quantity and type of vinyl monomer added. Using a fixed quantity of enzyme and support (3 mg enzyme, 100 mg support), the coupling efficiency varied from 2 to 50%. The most important characteristics in these immobilized systems were tested (stability in continuous washing, kinetic characteristics, storage, thermal, and lyophilization stability). Immobilized-enzyme graft copolymers have very similar kinetic behavior to that of the free enzyme. Diffusion is not seriously limited, as shown by kinetic parameters and energy activation values, and this indicates that the immobilization reaction does not alter the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号