首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary By succesive recycling of the thin stillage in mashing and fermenting fresh corn, the glycerol content in each fermentation increased by about 0.4% and accumulated to a high of 2.1% in the beer of the fifth recycle. Glycerol concentration declined after the fifth recycle. The original fermentation contained 0.8% glycerol.Presented in part at the Society for Industrial Microbiology Annual Meeting, August 7–12, 1988, Chicago, IL.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

2.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among “genetics–structure–function–conversion” and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac. JIMB-2008: BioEnergy-Special issue.  相似文献   

4.
Sustainable development of a bioenergy industry will require low‐cost, high‐yielding biomass feedstock of desirable quality. Switchgrass (Panicum virgatum L.) is one of the primary feedstock candidates in North America, but the potential to grow this biomass crop using fertility from biosolids has not been fully explored. The objective of this study was to examine the effects of harvest frequency and biosolids application on switchgrass in Virginia, USA. ‘Cave‐in‐Rock’ switchgrass from well‐established plots was cut once (November) or twice (July and November) per year between 2010 and 2012. Class A biosolids were applied once at rates of 0, 153, 306, and 459 kg N ha?1 in May 2010. Biomass yield, neutral and acid detergent fiber, cellulose, hemicellulose, lignin, and ash were determined. Theoretical ethanol potential (TEP, l ethanol Mg?1 biomass) and yield (TEY, l ethanol ha?1) were calculated based on cellulose and hemicellulose concentrations. Cutting twice per season produced greater biomass yields than one cutting (11.7 vs. 9.8 Mg ha?1) in 2011, but no differences were observed in other years. Cutting once produced feedstock with greater TEP (478 vs. 438 l Mg?1), but no differences in TEY between cutting frequencies. Biosolids applied at 153, 306, and 459 kg N ha?1 increased biomass yields by 25%, 37%, and 46%, and TEY by 25%, 34%, and 42%, respectively. Biosolids had inconsistent effects on feedstock quality and TEP. A single, end‐of‐season harvest likely will be preferred based on apparent advantages in feedstock quality. Biosolids can serve as an effective alternative to N fertilizer in switchgrass‐to‐energy systems.  相似文献   

5.
Sorghum grain (two varieties) was modified to different water contents (12% to 16% wet weight basis) and heated to 60°C, 70°C and 80°C for periods of 4, 8 and 12 min. Germination, seedling vigour, seedling dry matter, free fatty acid (FFA) content, fungal contamination and infestation with the insect pest Rhyzopertha dominica (F.) were all markedly affected by heat treatment. The effectiveness of the heat treatment was also influenced by the size of the sample used. Heat treatment at 60°C and 70°C resulted in germination being unaffected or stimulated while at 80°C and the higher water contents significantly reduced, when compared to untreated controls. The dry matter of seedlings, and seedling vigour was positively correlated with germination and heat treatment. Heat treatment had no effect on FFA. All stages of the insect pest, R. dominica, were destroyed at 70°C and an 8 min exposure time. However, the water content of the sorghum was critical in determining the efficacy against this pest. The percentage fungal contamination of grain was reduced from 90% to about 25% by heat treatment. However, some grain fungi, particularly Eurotium spp., Aspergillus niger and Penicillium spp. could still be isolated from sorghum grain treated at 80°C for up to 12 minutes.  相似文献   

6.
DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.  相似文献   

7.
Summary With slow feeding of xylose to a batch fermentation byPachysolen tannophilus, the yield of ethanol from xylose was improved to 0.41 g/g (80% of theoretical) with a maximum ethanol concentration of 26.5 g/L at 120 h. This is a 41% improvement on the ethanol yield observed for batch fermentations without slow feeding. The optimum level of xylose in the medium was determined to be between 5 and 8g/L; xylose at greater than 10 g/L leads to xylitol accumulation, whereas xylose below 3 g/L permits ethanol to be oxidized to acetate. This latter effect is exacerbated by increased aeration.  相似文献   

8.
Dry mill ethanol processes produce ethanol and animal feed from whole grains, where the wastewater after the distillation and separation of solid materials is called “thin stillage.” In this work, similar production of ethanol (3.5 g/L) and biomass (5 g/L) from thin stillage was obtained during batch cultivation of the edible fungus Neurospora intermedia in a 2‐m high airlift reactor and bubble column. The fungal biomass, containing 50% w/w protein and 12% w/w lipids, was rich in essential amino acids and omega‐3 and ‐6 fatty acids. In a continuous mode of fermentation, dilution rates of up to 0.2 h?1 could be applied without cell washout in the bubble column at 0.5 vvm. At 0.1 h?1, around 5 g/L of ethanol and 4 g/L of biomass containing ca. 50% w/w protein were produced. The fungus was able to assimilate saccharides in the liquid fraction as well as sugar backbones such as xylan and arabinan in the solid fraction. The inclusion of the current process could potentially lead to the production of 11 000 m3 of ethanol (5.5% improvement vs. normal industrial process) and around 6300 tons of high‐quality biomass for animal feed at a typical facility producing 200 000 m3 ethanol per year.  相似文献   

9.
Global wheat yields are suffering due to differences in regional climatic conditions and soil fertility. Plant breeders are continuously working to improve the yield per unit area of wheat crop through selecting superior lines as parents. The screening and field evaluation of available lines allow the selection of superior ones and subsequently improved varieties. Therefore, heritable distinctions among 33 bread wheat lines for yield and related attributes were assessed under field conditions. The experiment included thirty lines and three check varieties. Data relating to different plant characteristics was collected at maturity. Significant differences were recorded for yield and related traits of tested wheat lines and check varieties. Wheat lines V6, V12 and V20 proved better with reduced number of days to reach anthesis and other desirable traits compared to check varieties. Days to start heading had strong correlation with spike length and number of spikelets spike-1. Flag leaf area had positive relationship with peduncle length and yield related traits. The 1000-garin weight and grain yield were also correlated with each other. It is concluded that V6, V10 and V20 proved better for all studied traits than the rest of the lines. Therefore, these lines could be used in wheat breeding program as parents to improve yield.  相似文献   

10.
Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88 ± 8 L (49 ± 5 L CH4) and 96 ± 19 L (65 ± 14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD = 254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters.  相似文献   

11.
12.
苗期遮荫对棉花产量与品质形成的影响   总被引:3,自引:3,他引:3  
为揭示棉麦两熟共生期遮荫对棉花产量与品质形成的影响。在棉花苗期利用模拟棉麦两熟共生期遮荫的方法进行了研究。结果表明,遮荫对棉铃形成的影响因果枝,果节部位而异,遮荫有利于棉株下(1-3果枝),中(4-6果枝),上(7-9果枝)部果枝内围(1-2果节)铃的形成,对外围(≥3果节)尤其顶部果枝(≥10果枝)外围铃形成不利,从而决定铃重也随果枝,果节部位相应地变化,但遮荫对单株平均铃重的影响畔 小,变遮荫棉花籽棉产量而论,下,中部果枝的内围铃籽棉产量高于常规棉,在上,顶部果枝则相反,各部位果枝外围铃的籽棉产量均低于常规棉,遮荫棉花内,外围铃分布为1:0.36(常规棉为1:0.58),产量分布为1:0.42(常规棉为1:0.72)。苗期遮荫对棉纤维,棉籽品质性状的影响也主要在顶部果枝和上部果枝外围铃,综合分析遮荫棉花产量与品质的形成,棉花苗期耐遮荫性品种间存在差异。在本研究中以中9418耐遮荫性最强,中棉所19和春矮早次之。  相似文献   

13.
14.
15.
Three field experiments studying the effect of chlormequat (CCC) on the grain yield of spring wheat and the quality of the grain for baking purposes were made. In the first, CCC applied as a spray during the stage of rapid internode elongation proved more successful than application as a mixture with superphosphate drilled with the seed at sowing. Both methods prevented lodging and the depression of yield which occurred in the control plots. In the other two experiments the sole method of CCC application was by spraying.
In all three experiments CCC-treated plots had more ears per unit area and grains per ear than control plots; the one exception being at the lowest plant density derived from a seeding rate of 24 kg/ha. CCC helped prevent weather damage to the grain and as a result baking performance of the flour from treated plots was superior to that from the untreated plots.  相似文献   

16.
Summary During xylose fermentation byCandida shehatae ATCC 22984 with batch cell recycling, the volumetric ethanol fermentation rate increased two-fold, and the xylitol production rate increased three-fold as the cell density increased to ten-fold. In continuous fermentation with membrane-assisted cell recycle, the fermentation rates increased almost linearly with increasing agitation rates up to 300 rpm. The maximum continuous ethanol production rates obtained with 90 and 200 g L–1 xylose were respectively 2.4 and 4.4 g L–1h–1. The cell density was 65–70 g (dry wt) L–1. Ethanol yields ranged from 0.26 to 0.41 g g–1.  相似文献   

17.
In order to reduce the inhibiting effect of product on ethanol fermentation and to exploit at best the sugar substrate, a system continuously recycling the unfermented sugars and recovering produced ethanol is proposed in this paper. Unacceptable increases of unfermentable polysaccharides and ions in the broth up to inhibiting levels have been evidenced after about 40 d of continuous recycling. The accumulation of these substances has been overcome by installing in the production cycle two subsequent separated stages for polysaccharide enzymatic hydrolysis and ion bioaccumulation, respectively.  相似文献   

18.
Summary Intermittent-feeding of cellulose hydrolyzate to hemicellulose hydrolyzate of hardwood resulted in greater yields of ethanol usingPachysolen tannophilus than batch fermentations of either hydrolyzate alone or as a mix. Conversion efficiencies as great as 0.40 g ethanol/g sugar fed were achieved.  相似文献   

19.
粉煤灰滤泥混合物对土壤性质、萝卜产量与品质的影响   总被引:8,自引:2,他引:8  
粉煤灰和滤泥以1:1(w/w)比例混合并添加少量化肥配制成混合物,通过盆栽试验研究该混合物农用对土壤生物化学性质、萝卜产量和品质的影响以及重金属在土壤和萝卜中的富集状况。结果表明,该混合物中Dd、Pb、Cr、As和Hg含量均明显低于国家农用粉煤灰中污染物控制标准;施用一定数量的该混合物未见导致重金属在土壤和萝卜中的明显富集作用,重金属污染指数均<1;土壤细菌数量显著增加;脲酶、磷酸酶和纤维素酶的活性增强;促进了萝卜的生长发育和代谢作用,萝卜的生物产量、经济产量、还原糖和维生素C的含量均明显提高,因此,适量施用该混合物未见导致重金属对土壤和萝卜的明显污染,且具有较明显的改土培肥、增产和提高萝卜品质的效果。  相似文献   

20.
《Biomass》1988,15(1):25-43
Hydrous fuel ethanol (95%) and distiller's wet grain (DWG) were produced in a farm-scale plant (< 4 million liters ethanol year−1) from corn, wheat, and grain sorghum particles of various sizes, from corn combined with thin stillage-whey, and from various other cereal grains. These variations were made in a search to find the best set of conditions for maximizing the energy balance (energy output divided by energy input) and minimizing the cost of ethanol production. We found that the optimum hammermill screen size for corn, wheat, and grain sorghum was 1·59–2·38 mm. In tests with thin stillage and whey a higher energy balance (2·91) occurred when one part whey was mixed with three parts stillage, rather than the reverse (2·69). However, the reverse (three parts whey and one part stillage) gave a lower ethanol cost ($0.45 liter−1) than the original ($0.47 liter−1). Tests with various cereal grains (corn, oats, wheat, barley, rye, and grain sorghum) gave identical energy balance values (2·26) when 10% (v/v) ethanol beers were produced. However, rye ($0.50 liter−1), grain sorghum ($0.46 liter−1), and corn ($0.51 liter−1) yielded ethanol at the lowest net cost. Recommendations for farm-scale plants are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号