首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein import into chloroplasts is postulated to occur with the involvement of molecular chaperones. We have determined that the transit peptide of ferredoxin-NADP(H) reductase precursor binds preferentially to an Hsp70 from chloroplast stroma. To investigate the role of Hsp70 molecular chaperones in chloroplast protein import, we analyzed the import into pea chloroplasts of preproteins with decreased Hsp70 binding affinity in their transit peptides. Our results indicate that the precursor with the lowest affinity for Hsp70 molecular chaperones in its transit peptide was imported to chloroplasts with similar apparent Km as the wild type precursor and a 2-fold increase in Vmax. Thus, a strong interaction between chloroplast stromal Hsp70 and the transit peptide seems not to be essential for protein import. These results indicate that in chloroplasts the main unfolding force during protein import may be applied by molecular chaperones other than Hsp70s. Although stromal Hsp70s undoubtedly participate in chloroplast biogenesis, the role of these molecular chaperones in chloroplast protein translocation differs from the one proposed in the mechanisms postulated up to date.  相似文献   

2.
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.  相似文献   

3.
In chloroplasts, Hsp70 and Hsp100 chaperones have been long suspected to be the motors that provide the necessary energy for the import of precursor proteins destined to the organelle. The chaperones associate with the import translocon and meet the transit peptides as they emerge through the channel. After decades of active research, recent findings demonstrated that Hsp100 chaperones recognize transit peptides both in vitro and in vivo. Moreover, Hsp70 also plays a part in precursor import. The updated model of protein translocation into chloroplasts now presents new questions about the role of the chaperones in the process.  相似文献   

4.
The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane.  相似文献   

5.
Heat-shock protein 70 (Hsp70) chaperones function as molecular motors pulling precursor proteins across membranes. Although several Hsp70s have been identified in chloroplasts, their participation in protein translocation is still uncertain. A phylogenetic analysis of the peptide-binding domain from plant Hsp70s shows that they can be classified into defined groups related to their subcellular localizations, allowing differences in substrate specificities to be inferred. Using an algorithm developed by Blond-Elguindi et al. we detected three regions in the transit peptide of the pea ferredoxin-NADP+ reductase precursor (preFNR) that are related to binding with immunoglobulin heavy-chain binding protein (BiP), one of the members of the Hsp70 family resident in the endoplasmic reticulum. We constructed a mutant transit peptide in which prolines 18, 20 and 28 were substituted by serines. Thus, the theoretical probability of BiP-type binding of the peptide was abolished without modifying the sites for Hsp70 with DnaK-type binding. The stromal Hsp70 homolog CSS1 displayed lower affinity for this mutant transit peptide than for the wild-type presequence. Nevertheless, preFNR containing the mutant transit peptide was imported into isolated chloroplasts from pea with initial rates similar to that observed for the wild-type precursor, and only an 18% decrease in the total number of imported molecules was observed after 20 min of reaction. Our results support an import model for the preFNR in which neither DnaK- nor BiP-like Hsp70 molecular chaperones play a central role as motor of the translocation machinery in chloroplasts.  相似文献   

6.
Molecular chaperones are required for the translocation of many proteins across organellar membranes, presumably by providing energy in the form of ATP hydrolysis for protein movement. In the chloroplast protein import system, a heat shock protein 100 (Hsp100), known as Hsp93, is hypothesized to be the chaperone providing energy for precursor translocation, although there is little direct evidence for this hypothesis. To learn more about the possible function of Hsp93 during protein import into chloroplasts, we isolated knockout mutant lines that contain T-DNA disruptions in either atHSP93-V or atHSP93-III, which encode the two Arabidopsis (Arabidopsis thaliana) homologs of Hsp93. atHsp93-V mutant plants are much smaller and paler than wild-type plants. In addition, mutant chloroplasts contain less thylakoid membrane when compared to the wild type. Plastid protein composition, however, seems to be largely unaffected in atHsp93-V knockout plants. Chloroplasts isolated from the atHsp93-V knockout mutant line are still able to import a variety of precursor proteins, but the rate of import of some of these precursors is significantly reduced. These results indicate that atHsp93-V has an important, but not essential, role in the biogenesis of Arabidopsis chloroplasts. In contrast, knockout mutant plants for atHsp93-III, the second Arabidopsis Hsp93 homolog, had a visible phenotype identical to the wild type, suggesting that atHsp93-III may not play as important a role as atHsp93-V in chloroplast development and/or function.  相似文献   

7.
Most mitochondrial and chloroplast proteins are synthesized on cytosolic polyribosomes as precursor proteins, with an N-terminal signal sequence that targets the precursor to the correct organelle. In mitochondria, the chaperone Hsp70 functions as a molecular motor, pulling the precursor across the mitochondrial membranes; 97.0% of plant mitochondrial presequences contain an Hsp70 binding site. In chloroplasts, the outer envelope, intermembrane space and a stromal Hsp70 are thought to participate in protein import; 82.5% of chloroplast transit peptides have an Hsp70 binding site. The interaction of signal peptides with Hsp70 during the import process is supported by biochemical and bioinformatic studies.  相似文献   

8.
The 70-kD family of heat shock proteins (Hsp70s) is involved in a number of seemingly disparate cellular functions, including folding of nascent proteins, breakup of misfolded protein aggregates, and translocation of proteins across membranes. They act through the binding and release of substrate proteins, accompanied by hydrolysis of ATP. Chloroplast stromal Hsp70 plays a crucial role in the import of proteins into plastids. Mutations of an ATP binding domain Thr were previously reported to result in an increase in the Km for ATP and a decrease in the enzyme’s kcat. To ask which chloroplast stromal chaperone, Hsp70 or Hsp93, both of which are ATPases, dominates the energetics of the motor responsible for protein import, we made transgenic moss (Physcomitrella patens) harboring the Km-altering mutation in the essential stromal Hsp70-2 and measured the effect on the amount of ATP required for protein import into chloroplasts. Here, we report that increasing the Km for ATP hydrolysis of Hsp70 translated into an increased Km for ATP usage by chloroplasts for protein import. This thus directly demonstrates that the ATP-derived energy long known to be required for chloroplast protein import is delivered via the Hsp70 chaperones and that the chaperone’s ATPase activity dominates the energetics of the reaction.  相似文献   

9.
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.  相似文献   

10.
Protein import into chloroplasts occurs post-translationally in vitro. The precursor proteins are generally synthesised in a reticulocyte lysate- or wheat germ lysate-derived system and imported out of this system into chloroplast. These complex soluble protein mixtures are likely to contain factors, which influence somehow the import competence and import efficiency. Here we describe a heat-stable soluble proteinaceaous factor, which inhibits protein import into chloroplasts in vitro. The inhibitor interacts directly with the precursor protein and renders it import incompetent. This mode of action is supported by two observations: firstly, binding of the precursor to the chloroplast surface is diminished in the presence of the inhibitor. Secondly, when chloroplasts were loaded with precursor proteins under conditions, which allow only binding but not import the inhibitor was unable to abolish the subsequent translocation step.  相似文献   

11.
During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.  相似文献   

12.
During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.  相似文献   

13.
The study aims to gain insight into the mode of ligand recognition by tetratricopeptide repeat (TPR) domains of chloroplast translocon at the outer envelope of chloroplast (Toc64) and mitochondrial Om64, two paralogous proteins that mediate import of proteins into chloroplast and mitochondria, respectively. Chaperone proteins associate with precursor proteins in the cytosol to maintain them in a translocation competent conformation and are recognized by Toc64 and Om64 that are located on the outer membrane of the target organelle. Heat shock proteins (Hsp70) and Hsp90 are two chaperones, which are known to play import roles in protein import. The C‐termini of these chaperones are known to interact with the TPR domain of chloroplast Toc64 and mitochondrial Om64 in Arabidopsis thaliana (At). Using a molecular dynamics approach and binding energy calculations, we identify important residues involved in the interactions. Our findings suggest that the TPR domain from AtToc64 has higher affinity towards C‐terminal residues of Hsp70. The interaction occurs as the terminal helices move towards each other enclosing the cradle on interaction of AtHsp70 with the TPR domain. In contrast, the TPR domain from AtOm64 does not discriminate between the C‐termini of Hsp70 and Hsp90. These binding affinities are discussed with respect to our knowledge of protein targeting and specificity of protein import into endosymbiotic organelles in plant cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
《Plant science》2001,161(3):379-389
There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions.  相似文献   

15.
Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.  相似文献   

16.
Heat shock protein 70s (Hsp70s) are encoded by a multigene family and are located in different cellular compartments. They have broad-ranging functions, including involvement in protein trafficking, prevention of protein aggregation, and assistance in protein folding. Hsp70s work together with their cochaperones, J domain proteins and nucleotide exchange factors (e.g., GrpEs), in a functional cycle of substrate binding and release accompanied by ATP hydrolysis. We have taken advantage of the gene targeting capability of the moss Physcomitrella patens to investigate the functions of chloroplast Hsp70s. We identified four Hsp70 genes and two GrpE cochaperone homolog genes (CGE) in moss that encode chloroplast proteins. Disruption of one of the Hsp70 genes, that for Hsp70-2, caused lethality, and protein import into heat-shocked chloroplasts isolated from temperature-sensitive hsp70-2 mutants was appreciably impaired. Whereas the double cge null mutant was not viable, we recovered a cge1 null/cge2 knock down mutant in which Hsp70-2 was upregulated. Chloroplasts isolated from this mutant demonstrated a defect in protein import. In addition, two different precursors staged as early import intermediates could be immunoprecipitated with an Hsp70-2–specific antibody. This immunoprecipitate also contained Hsp93 and Tic40, indicating that it represents a precursor still in the Toc/Tic translocon. Together, these data indicate that a stromal Hsp70 system plays a crucial role in protein import into chloroplasts.  相似文献   

17.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

18.
Chloroplast transit peptides have been proposed to function as substrates for Hsp70 molecular chaperones. Many models of chloroplast protein import depict Hsp70s as the translocation motors that drive protein import into the organelle, but to our knowledge, no direct evidence has demonstrated that transit peptides function either in vivo or in vitro as substrates for the chaperone. In this report, we demonstrate that DnaK binds SStp (the full-length transit peptide for the precursor to the small subunit of Rubisco) in vivo when fused to either glutathione-S-transferase (GST) or to an His6-S-peptide tag (His-S) via an ATP-dependent mechanism. Three independent biophysical and biochemical assays confirm the ability of DnaK and SStp to interact in vitro. The cochaperones, DnaJ and GrpE, were also associated with the DnaK/SStp complex. Therefore, both GST-SStp and His-S-SStp can be used as affinity-tagged substrates to study prokaryotic chaperone/transit peptide interactions as well as to provide a novel functional probe to study the dynamics of DnaK/DnaJ/GrpE interactions in vivo. The combination of these results provides the first experimental support for a transit peptide-dependent interaction between a chloroplast precursor and Hsp70. These results are discussed in light of a general mechanism for protein translocation into chloroplasts and mitochondria.  相似文献   

19.
Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.  相似文献   

20.
Three proteins from the chloroplastic outer envelope membrane and four proteins from the inner envelope membrane have been identified as components of the chloroplastic protein import apparatus. Multiple molecular chaperones and a stromal processing peptidase are also important components of the import machinery. The interactions of these proteins with each other and with the precursors destined for transport into chloroplasts are gradually being described using both biochemical and genetic strategies. Homologs of some transport components have been identified in cyanobacteria suggesting that at least some of import machinery was inherited from the cyanobacterial ancestors that gave rise to chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号