首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural studies conducted on the intracellular symbiont of Glaucocystis nostochinearum Itz., a unicellular alga with a debated taxonomic position, have shown that the endosymbiont, although somewhat aberrant, is a blue-green alga. Due possibly to its intracellular habitat, it lacks the characteristic cyanophycean double-layered cell wall and the cells appear to be completely naked, bound only by a single plasma membrane. The protoplasm of the cell is differentiated into the lamellated chromatoplasm, which contains the photosynthetic pigments and polyphosphate granules, and a nonlamellar ccntroplasm, in which the nucleic material is dispersed. The usual cyanophycean organelles, as well as the different vacuoles and granules, with the exception of the formed bodies, are missing. Approximately 10% of the cells sliows a peculiar homogeneous area at one tip, the nature of which is unknown. Binary fission of the organism is mentioned. Since this cyanelle has not yet been classified, we name it Skujapelta nuda nov. gen., nov. sp.; and because of its structural peculiarities we find it necessary to create a new family for it, Skujapeltaceae in the order Chroococcales.  相似文献   

2.
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the γ subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.  相似文献   

3.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   

4.
A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host''s ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts'' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts'' phenotypes, and their persistence in natural host populations. We propose the designation “Candidatus Rickettsiella viridis” for the symbiont.  相似文献   

5.
Mutualisms with facultative, non-essential heritable microorganisms influence the biology of many insects, and they can have major effects on insect host fitness in certain situations. One of the best-known examples is found in aphids where the facultative endosymbiotic bacterium Hamiltonella defensa confers protection against hymenopterous parasitoids. This symbiont is widely distributed in aphids and related insects, yet its defensive properties have only been tested in two aphid species. In a wild population of the grain aphid, Sitobion avenae, we identified several distinct strains of endosymbiotic bacteria, including Hamiltonella. The symbiont had no consistent effect on grain aphid fecundity, though we did find a significant interaction between aphid genotype by symbiont status. In contrast to findings in other aphid species, Hamiltonella did not reduce aphid susceptibility to two species of parasitoids (Aphidius ervi and Ephedrus plagiator), nor did it affect the fitness of wasps that successfully completed development. Despite this, experienced females of both parasitoid species preferentially oviposited into uninfected hosts when given a choice between genetically identical individuals with or without Hamiltonella. Thus, although Hamiltonella does not always increase resistance to parasitism, it may reduce the risk of parasitism in its aphid hosts by making them less attractive to searching parasitoids.  相似文献   

6.
Lepidodendralean lycopsids, a dominant component in Late Palaeozoic wetland plant communities, possess a diversity of reproductive structures that are primarily known from the Late Palaeozoic floras of Europe and North America. Here we document an anatomically preserved lepidodendralean lycopsid sporophyll with attached megasporangium from the Lower Permian Taiyuan Formation in Shanxi Province, northern China. The sporophyll has a pedicel onto which the sporangium is attached, and the sporangium is dorsiventrally flattened, proximally dehiscent and longitudinal ridged. The megasporangial wall comprises three zones: an outer uniseriate layer of columnar cells, a middle layer 1–3 cells thick comprising isodiametric parenchymatous cells, and an inner zone 1–3 cells thick of thick-walled cells. The vascular system comprises a single xylem strand surrounded by zone of parenchyma that continues through the pedicel into the lamina. Within the megasporangium a single functional megaspore and three abortive megaspores occur. Features of this specimen conform to Achlamydocarpon Schumacher-Lambry, and comparisons with other species show it shares similarities with A. takhtajanii (Sni.) Schumacher-Lambry and A. varius Taylor and Brack-Hanes. Although the morphology and anatomy of the specimen we describe overlaps with these two species, it is distinct from both leading to the erection of the new species A. intermedium sp. nov. The evolutionary significance of A. intermedium sp. nov. and the identity of its parent plant are considered, and the status and systematic position of “Oriental lepidophytes” from the Cathaysian floras are discussed.  相似文献   

7.
Bacterial symbionts that undergo long-term maternal transmission experience elevated fixation of deleterious mutations, resulting in massive loss of genes and changes in gene sequences that appear to limit efficiency of gene products. Potentially, this dwindling of symbiont functionality impacts hosts that depend on these bacteria for nutrition. One evolutionary escape route is the acquisition of a novel symbiont with a robust genome and metabolic capabilities. Such an acquisition has occurred in an ancestor of Philaenus spumarius, the meadow spittlebug (Insecta: Cercopoidea), which has replaced its ancient association with the tiny genome symbiont Zinderia insecticola (Betaproteobacteria) with an association with a symbiont related to Sodalis glossinidius (Gammaproteobacteria). Spittlebugs feed exclusively on xylem sap, a diet that is low both in essential amino acids and in sugar or other substrates for energy production. The new symbiont genome has undergone proliferation of mobile elements resulting in many gene inactivations; nonetheless, it has selectively maintained genes replacing functions of its predecessor for amino-acid biosynthesis. Whereas ancient symbiont partners typically retain perfectly complementary sets of amino-acid biosynthetic pathways, the novel symbiont introduces some redundancy as it retains some pathways also present in the partner symbionts (Sulcia muelleri). Strikingly, the newly acquired Sodalis-like symbiont retains genes underlying efficient routes of energy production, including a complete TCA cycle, potentially relaxing the severe energy limitations of the xylem-feeding hosts. Although evolutionary replacements of ancient symbionts are infrequent, they potentially enable evolutionary and ecological novelty by conferring novel metabolic capabilities to host lineages.  相似文献   

8.
Vesicomyid clams harbor intracellular sulfur-oxidizing bacteria that are predominantly maternally inherited and co-speciate with their hosts. Genome recombination and the occurrence of non-parental strains were recently demonstrated in symbionts. However, mechanisms favoring such events remain to be identified. In this study, we investigated symbionts in two phylogenetically distant vesicomyid species, Christineconcha regab and Laubiericoncha chuni, which sometimes co-occur at a cold-seep site in the Gulf of Guinea. We showed that each of the two species harbored a single dominant bacterial symbiont strain. However, for both vesicomyid species, the symbiont from the other species was occasionally detected in the gills using fluorescence in situ hybridization and gene sequences analyses based on six symbiont marker genes. Symbiont strains co-occurred within a single host only at sites where both host species were found; whereas one single symbiont strain was detected in C. regab specimens from a site where no L. chuni individuals had been observed. These results suggest that physical proximity favored the acquisition of non-parental symbiont strains in Vesicomyidae. Over evolutionary time, this could potentially lead to genetic exchanges among symbiont species and eventually symbiont displacement. Symbiont densities estimated using 3D fluorescence in situ hybridization varied among host species and sites, suggesting flexibility in the association despite the fact that a similar type of metabolism is expected in all symbionts.  相似文献   

9.
Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in animals.  相似文献   

10.
A new arthropod, Luohuilinella rarus nov. gen., nov. sp., is described from the Lower Cambrian Chengjiang Lagerstätte (Series 2, Stage 3), Yunnan, Southwest China. Luohuilinella nov. gen. is extremely rare in this Lagerstätte, represented by a single specimen. It has a large cephalic shield and a tapering trunk with well-developed pleural field. The cephalic shield is crescentic in outline and its anterolateral margin has two notches. The trunk is weakly trilobate, composed of 27 distinct tergites with well-developed pleural spines and a terminal piece. Luohuilinella nov. gen. resembles xandarellids in overall body architecture and especially in the reduced first trunk tergite. Its ventral morphology is, however, presently unknown. Therefore, it is provisionally assigned to Xandarellida.  相似文献   

11.
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.  相似文献   

12.
The broad-headed bug Riptortus clavatus (Heteroptera: Alydidae) possesses a number of crypts at a posterior midgut region, which house a dense population of a bacterial symbiont belonging to the genus Burkholderia. Although the symbiont is highly prevalent (95 to 100%) in the host populations, the symbiont phylogeny did not reflect the host systematics at all. In order to understand the mechanisms underlying the promiscuous host-symbiont relationship despite the specific and prevalent association, we investigated the transmission mode and the fitness effects of the Burkholderia symbiont in R. clavatus. Inspection of eggs and a series of rearing experiments revealed that the symbiont is not vertically transmitted but is environmentally acquired by nymphal insects. The Burkholderia symbiont was present in the soil of the insect habitat, and a culture strain of the symbiont was successfully isolated from the insect midgut. Rearing experiments by using sterilized soybean bottles demonstrated that the cultured symbiont is able to establish a normal and efficient infection in the host insect, and the symbiont infection significantly improves the host fitness. These results indicated that R. clavatus postnatally acquires symbiont of a beneficial nature from the environment every generation, uncovering a previously unknown pathway through which a highly specific insect-microbe association is maintained. We suggest that the stinkbug-Burkholderia relationship may be regarded as an insect analogue of the well-known symbioses between plants and soil-associated microbes, such as legume-Rhizobium and alder-Frankia relationships, and we discuss the evolutionary relevance of the mutualistic but promiscuous insect-microbe association.  相似文献   

13.
Two previously recorded new species of the large-eye seabream genus Gymnocranius (Gymnocranius sp. D and Gymnocranius sp. E) remain undescribed. Here we describe Gymnocranius sp. E as Gymnocranius obesus sp. nov. This new species is morphologically distinct from all other known species under Gymnocranius by the following combination of characters: relatively deep body, with ratio of standard length to body depth 2.2–2.4; protruding large eye, with eye diameter about equal to or slightly larger than inter-orbital width; caudal fin moderately forked; no blue spots or wavy blue lines on cheek and snout in adults; fourth transversal dark bar on flank running from the sixth spine of the dorsal fin to the origin of the anal fin; anal, caudal and dorsal fins drab with yellowish to yellow margins. Gymnocranius obesus sp. nov. is distinct from G. griseus, with which it has been previously confused by a relatively larger head, scales above lateral line without dark basal patch, and a smaller number of front scales on the dorsal side of the head. Gymnocranius obesus sp. nov. is genetically distinct from its closest known relative, Gymnocranius sp. D by 104 diagnostic nucleotide characters, which translates into a 9.6% sequence divergence at the mitochondrial cytochrome b gene. Gymnocranius obesus sp. nov. reaches a length of at least 295 mm. Its distribution, from the Ryukyu Islands to Bali, including Taiwan and the Flores Sea, mostly coincides with the western half of the Coral Triangle.  相似文献   

14.
15.
Ambrosia beetles and fungi represent an interesting and economically important symbiosis, but the vast majority of ambrosia fungi remain unexplored, hindering research, management of pathogens, and mitigation of invasive species. Beetles in the subtribe Premnobiini are one example of an entire beetle lineage whose fungal symbionts have never been studied. Here, we identify one dominant fungal symbiont of Premnobius cavipennis by using fungus culturing, community sequencing, microtome sectioning and micro-CT scanning of mycangia. Phylogenetic analyses of combined 18S and 28S rDNA and β-tubulin sequences revealed a highly divergent fungal lineage within Ophiostomatales, Afroraffaelea ambrosiae gen. nov. et sp. nov. The newly described fungal lineage represents another origin of the symbiosis within the Kingdom Fungi, adding to our understanding of the geographic ancestry of ambrosia fungi. P. cavipennis possesses pharyngeal mycangia which appear restrictive in fungus selection. This ambrosia beetle-fungus association has remained stable even after invasions into non-native regions.  相似文献   

16.
The large tropical lucinid clam Codakia orbicularis has a symbiotic relationship with intracellular, sulfide-oxidizing chemoautotrophic bacteria. The respiration strategies utilized by the symbiont were explored using integrative techniques on mechanically purified symbionts and intact clam-symbiont associations along with habitat analysis. Previous work on a related symbiont species found in the host lucinid Lucinoma aequizonata showed that the symbionts obligately used nitrate as an electron acceptor, even under oxygenated conditions. In contrast, the symbionts of C. orbicularis use oxygen as the primary electron acceptor while evidence for nitrate respiration was lacking. Direct measurements obtained by using microelectrodes in purified symbiont suspensions showed that the symbionts consumed oxygen; this intracellular respiration was confirmed by using the redox dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride). In the few intact chemosymbioses tested in previous studies, hydrogen sulfide production was shown to occur when the animal-symbiont association was exposed to anoxia and elemental sulfur stored in the thioautotrophic symbionts was proposed to serve as an electron sink in the absence of oxygen and nitrate. However, this is the first study to show by direct measurements using sulfide microelectrodes in enriched symbiont suspensions that the symbionts are the actual source of sulfide under anoxic conditions.  相似文献   

17.
Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought.  相似文献   

18.
19.
Symbionts can have mutualistic effects that increase their host’s fitness and/or parasitic effects that reduce it. Which of these strategies evolves depends in part on the balance of their costs and benefits to the symbiont. We have examined these questions in Wolbachia, a vertically transmitted endosymbiont of insects that can provide protection against viral infection and/or parasitically manipulate its hosts’ reproduction. Across multiple symbiont strains we find that the parasitic phenotype of cytoplasmic incompatibility and antiviral protection are uncorrelated. Strong antiviral protection is associated with substantial reductions in other fitness-related traits, whereas no such trade-off was detected for cytoplasmic incompatibility. The reason for this difference is likely that antiviral protection requires high symbiont densities but cytoplasmic incompatibility does not. These results are important for the use of Wolbachia to block dengue virus transmission by mosquitoes, as natural selection to reduce these costs may lead to reduced symbiont density and the loss of antiviral protection.  相似文献   

20.
Two related perciform fish species of the subfamily Monotaxinae (Sparoidea: Lethrinidae) Gymnocranius superciliosus sp. nov. and Gymnocranius satoi sp. nov. are described from specimens and tissue samples from the Coral Sea and adjacent regions. G. superciliosus sp. nov. is distinct from all other known Gymnocranius spp. by the following combination of characters: body elongated (depth 2.7–3.1 in standard length), caudal fin moderately forked with a subtle middle notch, its lobes slightly convex inside, distinctive blackish eyebrow, snout and cheek with blue speckles, and dorsal, pectoral, anal and caudal fins reddish. G. satoi sp. nov. is the red-finned ‘Gymnocranius sp.’ depicted in previous taxonomic revisions. While colour patterns are similar between the two species, G. satoi sp. nov. is distinct from G. superciliosus sp. nov. by the ratio of standard length to body depth (2.4–2.5 vs. 2.7–3.1) and by the shape of the caudal fin, which is more shallowly forked, its lobes convex inside and their extremities rounded. The two species are genetically distinct from each other and they are genetically distinct from G. elongatus, G. euanus, G. grandoculis, and G. oblongus sampled from the Coral Sea and adjacent regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号