首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loureirin B (LB) is a natural product derived from Sanguis draconis, which has hypoglycaemic effects. In order to research the possible target of LB in the treatment of diabetes, molecular docking was used to simulate the interaction between LB and potential targets, and among them, glucagon-like peptide-1 receptor (GLP-1R) had the optimal results. Further, spectroscopy and surface plasmon resonance (SPR) experiments were applied to detect the interaction between LB and GLP-1R. Ultimately, after GLP-1R siRNA interfering the expression of GLP-1R in Ins-1 cell, the promoting insulin secretion of LB was weaken, which directly proved that GLP-1R plays an important role. These results show that LB promotes insulin secretion of Ins-1 cells through GLP-1R. Hence, the strategy of LB as a prodrug will provide a potential approach for non-peptide GLP-1R agonist.  相似文献   

2.
Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. We performed DJB or sham surgery in GK and Wistar rats. Blood glucose levels and glucose tolerance were monitored, and the plasma insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured. β-Cell area, islet fibrosis, intestinal morphology, and the density of enteroendocrine cells expressing GLP-1 and/or GIP were quantified. Improved postprandial glycemia was observed from 3 mo after DJB in diabetic GK rats, persisting until 12 mo after surgery. Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.  相似文献   

3.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   

4.
Exenatide, the active ingredient of BYETTA (exenatide injection), is an incretin mimetic that has been developed for the treatment of patients with type 2 diabetes. Exenatide binds to and activates the known GLP-1 receptor with a potency comparable to that of the mammalian incretin GLP-1(7-36), thereby acting as a glucoregulatory agent. AC3174 is an analog of exenatide with leucine substituted for methionine at position 14, [Leu(14)]exendin-4. The purpose of these studies was to evaluate the glucoregulatory activity and pharmacokinetics of AC3174. In RINm5f cell membranes, the potency of AC3174 for the displacement of [(125)I]GLP-1 and activation of adenylate cyclase was similar to that of exenatide and GLP-1. In vivo, AC3174, administered as a single IP injection, significantly decreased plasma glucose concentration and glucose excursion following the administration of an oral glucose challenge in both non-diabetic (C57BL/6) and diabetic db/db mice (P<0.05 vs. vehicle-treated). The magnitude of glucose lowering of AC3174 was comparable to exenatide. The ED(50) values of AC3174 for glucose lowering (60 minute post-dose) were 1.2 microg/kg in db/db mice and 1.3 microg/kg in C57BL/6 mice. AC3174 has insulinotropic activity in vivo. Administration of AC3174 resulted in a 4-fold increase in insulin concentrations in normal mice following an IP glucose challenge. AC3174 was also shown to inhibit food intake and decrease gastric emptying in rodent models. AC3174 was stable in human plasma (>90% of parent peptide was present after 5 h of incubation). In rats, the in vivo half-life of AC3174 was 42-43 min following SC administration. In summary, AC3174 is an analog of exenatide that binds to the GLP-1 receptor in vitro and shares many of the biological and glucoregulatory activities of exenatide and GLP-1 in vivo.  相似文献   

5.
A possible association between glucagon-like peptide-1 (GLP-1) analogs and incidences of pancreatitis has been suggested based on clinical studies. In male and female diabetic Zucker diabetic fatty (ZDF) rats, we investigated the effects of continuous administration of liraglutide and exenatide on biochemical [lipase, pancreatic amylase (P-amylase)] and histopathological markers of pancreatitis. Male and female ZDF rats were dosed for 13 wk with liraglutide (0.4 or 1.0 mg·kg(-1)·day(-1) sc once daily) or exenatide (0.25 mg·kg(-1)·day(-1) sc, Alzet osmotic minipumps). P-amylase and lipase plasma activity were measured, and an extended histopathological and stereological (specific cell mass and proliferation rate) evaluation of the exocrine and the endocrine pancreas was performed. Expectedly, liraglutide and exenatide lowered blood glucose and Hb A(1c) in male and female ZDF rats, whereas β-cell mass and proliferation rate were increased with greatly improved blood glucose control. Whereas neither analog affected lipase activity, small increases in P-amylase activity were observed in animals treated with liraglutide and exenatide. However, concurrent or permanent increases in lipase and P-amylase activity were never observed. Triglycerides were lowered by both GLP-1 analogs. The qualitative histopathological findings did not reveal adverse effects of liraglutide. The findings were mainly minimal in severity and focal in distribution. Similarly, the quantitative stereological analyses revealed no effects of liraglutide or exenatide on overall pancreas weight or exocrine and duct cell mass or proliferation. The present study demonstrates that, in overtly diabetic male and female ZDF rats, prolonged exposure to GLP-1 receptor agonists does not affect biochemical or histopathological markers of pancreatitis, and whereas both exenatide and liraglutide increase β-cell mass, they have no effect on the exocrine pancreas. However, clinical outcome studies and studies using primate tissues and/or studies in nonhuman primates are needed to further assess human risk.  相似文献   

6.
Incretins, enhancers of insulin secretion, are essential for glucose tolerance, and a reduction in their function might contribute to poor beta-cell function in patients with type-2 diabetes mellitus. However, at supraphysiological doses, the incretin glucagon-like peptide-1 (GLP-1) protects pancreatic beta cells, and inhibits glucagon secretion, gastric emptying and food intake, leading to weight loss. GLP-1 mimetics, which are stable-peptide-based activators of the GLP-1 receptor, and incretin enhancers, which inhibit the incretin-degrading enzyme dipeptidyl peptidase-4, have emerged as therapies for type-2 diabetes and have recently reached the market. The pathophysiological basis the clinical use of these therapeutics is reviewed here.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with antidiabetic action through its ability to stimulate insulin secretion, increase beta cell neogenesis, inhibit beta cell apoptosis, inhibit glucagon secretion, delay gastric emptying and induce satiety. It has therefore been explored as a novel treatment of type 2 diabetes. A problem is, however, that GLP-1 is rapidly inactivated by the dipeptidyl peptidase-4 (DPP-4) enzyme, which results in a short circulating half-life of the active form of GLP-1 (< 2 min). Two strategies have been employed to overcome this obstacle as a treatment of diabetes. One is to use GLP-1 receptor agonists that have a prolonged half-life due to reduced degradation by DPP-4. These GLP-1 mimetics include exenatide and liraglutide. Another strategy is to inhibit the enzyme DPP-4, which prolongs the half-life of endogenously released active GLP-1. Both these strategies have been successful in animal studies and in clinical studies of up to one year's treatment. This review will summarize the background and the current (mid 2004) clinical experience with these two strategies.  相似文献   

8.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.  相似文献   

9.
目的:研究下丘脑室旁核(paraventricular nucleus,PVN)注射胰高血糖素样肽-1(GLP-1)对糖尿病早期大鼠胃排空的影响,并探讨其相关作用机制。方法:60只清洁级雄性Wistar大鼠随机分为正常对照组(NC组),糖尿病组(DM组),GLP-1干预组(GLP-1组),每组各20只,后两组腹腔注射链脲佐菌素(STZ)制备糖尿病模型,分别于注射STZ2周、6周后每组随机取半数进行实验,实验前于无菌条件下大鼠一侧下丘脑PVN区埋置套管,GLP-1组经套管注入GLP-1,NC组及DM组注入等体积生理盐水。酚红灌胃法检测胃排空率,酶联免疫吸附法(ELISA)测定血浆GLP-1浓度,半定量RT-PCR法测定胃窦、胃底GLP-1RmRNA表达。结果:注射STZ 2周后,DM组较NC组胃排空率显著升高(P〈0.01)。GLP-1组胃排空率低于DM组(P〈0.01),血浆GLP-1浓度高于DM组及NC组(P均〈0.05),胃窦GLP-1RmRNA表达明显高于DM组、NC组(P均〈0.01)。注射STZ 6周后,DM组胃排空率高于NC组(P〈0.01)。GLP-1组较DM组胃排空率显著降低(P〈0.01),血浆GLP-1浓度、胃窦GLP-1RmRNA表达显著高于DM组、NC组(P均〈0.01)。结论:下丘脑PVN区注射GLP-1后,可减慢糖尿病大鼠初期加速的胃排空,原因可能与血浆GLP-1浓度及胃窦GLP-1RmRNA表达增加有关。  相似文献   

10.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

11.
BackgroundMatrine (Mat), a bitter tastes compounds of derived from leguminosae such as Sophora flavescens and S. subprostrata, commonly used to improve obesity and diabetes.PurposeOur study to demonstrate bitter substances can stimulate the Bitter taste receptors (TAS2Rs) or Calcium-sensing receptor (CaSR) to stimulate the secretion of GLP-1 to promote blood glucose regulation.MethodsThe diabetic mice and intestinal secretory cell model were established to evaluate the Mat on glucose metabolism, intestinal insulin secretion and GLP-1 secretion related substances. To clarify the mechanism of Mat in regulating GLP-1 secretion by immunofluorescence, calcium labeling, siRNA, and molecular docking.ResultsThe results showed that Mat could significantly improve glucose metabolism and increased insulin and GLP-1 secretion in diabetic mice and increased trisphosphate inositol (IP3) levels by affecting the expression of phospholipase C β2 (PLCβ2) and promote an increase in intracellular Ca2+ levels in STC-1 cells to subsequently stimulate the secretion of GLP-1. Knockdown of the bitter taste receptors mTas2r108, mTas2r137, and mTas2r138 in STC-1 cells by siRNA did could not affect the role of Mat in regulating GLP-1. However, the secretion of GLP-1 by Mat could be significantly inhibited by administration of a CaSR inhibitor or siRNA CaSR. Molecular docking analysis showed that Mat could embed CaSR protein and bind to the original ligand of the egg white at the same amino acid site to play the role of an agonist.ConclusionMatrine is a typical bitter alkaloid could be used as an agonist of CaSR to stimulate the secretion of GLP-1 in the intestine, and it may be used as a potential drug for diabetes treatment.  相似文献   

12.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from intestinal L cells upon nutrients ingestion, and is currently used for treating diabetes mellitus. It plays an important role in receptor modulation and cross talk with insulin at the coronary endothelium (CE) and cardiomyocytes (CM) in diabetic type 1 rat heart model. We studied the effects of insulin, GLP-1 analogues (exendin-4), and dipeptidyl peptidase-IV (DPP-IV) inhibitor on GLP-1 cardiac receptor modulation. The binding affinity of GLP-1 to its receptor on CE and CM was calculated using a rat heart perfusion model with [(125)I]-GLP-1(7-36). Tissue samples from the heart were used for immunostaining and Western blot analyses. GLP-1 systemic blood levels were measured using ELISA. GLP-1 binding affinity (τ) increased on the CE (0.33 ± 0.01 vs. 0.25 ± 0.01 min; p < 0.001) and decreased on the CM (0.29 ± 0.02 vs. 0.43 ± 0.02 min; p < 0.001) in the diabetic non-treated rats when compared to normal. There was normalization of τ back to baseline on the CE and CM levels with insulin and DPP-IV inhibitor treatment, respectively. Histological sections and immunofluorescence showed receptor up-regulation in diabetic rats with significant decrease and even normalization with the different treatment strategies. Systemic GLP-1 levels increased after 14 days of diabetes induction (10 ± 3.7 vs. 103 ± 58 pM; p = 0.0005). In conclusion, there is a significant GLP-1 receptor affinity modulation on the CE and CM levels in rats with diabetes type 1, and a cross talk with GLP-1 analogues in early prevention of cardiac remodeling.  相似文献   

13.
胰高血糖素样肽1受体--治疗糖尿病新药的研究热点   总被引:5,自引:0,他引:5  
胰高血糖素样肽l(glucagon—like peptide—l,GLP-1)与胰岛素分泌和糖代谢调节密切相关。GLP-1与其受体(GLP-1receptor,GLP-1R)结合后,主要通过cAMP和P13K两条信号途径,促进胰岛素的分泌,刺激胰岛β细胞的增殖和分化。对GLP-1R结构和信号传导机制的研究,有助于了解其在糖尿病病理进程中的作用,为开发新型糖尿病治疗药物指明方向。  相似文献   

14.
High fat diet feeding results in hyperglycemia and insulin resistance, which is a major pathological feature of type-2 diabetes mellitus. The use of oral hypoglycaemic drugs is limited due to its deleterious side effects and there is a need to find more efficacious agents for diabetes management. Hence, it is of interest to show the mechanism of action of β-Caryophyllene on insulin signalling molecules in gastrocnemius muscle of high fat diet - induced type-2 diabetic rats. An oral effective dose of with β-Caryophyllene (200 mg/kg b.wt) was given for 30 days to high fat diet (comprising 2% cholesterol, 1% cholic acid, 30% coconut oil, 67% conventional rat feed) and fructose fed type-2 diabetic rats to find out whether β-Caryophyllene regulates IRS-1/Akt pathway of insulin signalling. The data shows that, β-Caryophyllene treatment significantly increased the mRNA and protein expression of insulin receptor (IR) in diabetic rats whereas there is no significant difference in mRNA expression of insulin receptor-substrate-1 (IRS-1) was observed among groups. The Akt mRNAand GLUT-4mRNA and protein level were also improved in gastrocnemius muscle of type-2 diabetic rats. Thus, we concluded that β-Caryophyllene could be used as potential phyto medicine for type-2 diabetes management.  相似文献   

15.
Many nuclear and cytoplasmic proteins are O-glycosylated on serine or threonine residues with the monosaccharide beta-N-acetylglucosamine, which is then termed O-linked N-acetylglucosamine (O-GlcNAc). It has been shown that abnormal O-GlcNAc modification (O-GlcNAcylation) of proteins is one of the causes of insulin resistance and diabetic complications. In this study, in order to examine the relationship between O-GlcNAcylation of proteins and glucose-stimulated insulin secretion in noninsulin-dependent type (type 2) diabetes, we investigated the level of O-GlcNAcylation of proteins, especially that of PDX-1, and the expression of O-GlcNAc transferase in Goto-Kakizaki (GK) rats, which are an animal model of type-2 diabetes. By immunoblot and immunohistochemical analyses, the expression of O-GlcNAc transferase protein and O-GlcNAc-modified proteins in whole pancreas and islets of Langerhans of 15-week-old diabetic GK rats and nondiabetic Wistar rats was examined. The expression of O-GlcNAc transferase at the protein level and O-GlcNAc transferase activity were increased significantly in the diabetic pancreas and islets. The diabetic pancreas and islets also showed an increase in total cellular O-GlcNAc-modified proteins. O-GlcNAcylation of PDX-1 was also increased. In the diabetic GK rats, significant increases in the immunoreactivities of both O-GlcNAc and O-GlcNAc transferase were observed. PUGNAc, an inhibitor of O-GlcNAcase, induced an elevation of O-GlcNAc level and a decrease of glucose-stimulated insulin secretion in isolated islets. These results indicate that elevation of the O-GlcNAcylation of proteins leads to deterioration of insulin secretion in the pancreas of diabetic GK rats, further providing evidence for the role of O-GlcNAc in the insulin secretion.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1) receptor agonists potentiate glucose-induced insulin secretion. In addition, they have been reported to increase pancreatic beta cell mass in diabetic rodents. However, the precise mode of action of GLP-1 receptor agonists still needs to be elucidated. Here we clarify the effects of the human GLP-1 analog liraglutide on beta cell fate and function by using an inducible Cre/loxP-based pancreatic beta cell tracing system and alloxan-induced diabetic mice. Liraglutide was subcutaneously administered once daily for 30 days. The changes in beta cell mass were examined as well as glucose tolerance and insulin secretion. We found that chronic liraglutide treatment improved glucose tolerance and insulin response to oral glucose load. Thirty-day treatment with liraglutide resulted in a 2-fold higher mass of pancreatic beta cells than that in vehicle group. Liraglutide increased proliferation rate of pancreatic beta cells and prevented beta cells from apoptotic cells death. However, the relative abundance of YFP-labeled beta cells to total beta cells was no different before and after liraglutide treatment, suggesting no or little contribution of neogenesis to the increase in beta cell mass. Liraglutide reduced oxidative stress in pancreatic islet cells of alloxan-induced diabetic mice. Furthermore, the beneficial effects of liraglutide in these mice were maintained two weeks after drug withdrawal. In conclusion, chronic liraglutide treatment improves hyperglycemia by ameliorating beta cell mass and function in alloxan-induced diabetic mice.  相似文献   

17.
18.
Exenatide (synthetic exendin-4) is a stable analogue of glucagon-like peptide 1 (GLP-1) and has recently been approved for clinical use against type 2 diabetes. Exenatide is believed to exert its effects via the GLP-1 receptor with almost the same potency as GLP-1 in terms of lowering blood glucose. Short term exenatide treatment normalizes the altered vascular tone in type 2 diabetic rats, probably due to the reduction in glycemia. The aim of this study was to investigate whether exenatide directly protects against triglyceride-induced endothelial dysfunction in rat femoral arterial rings ex vivo. Short term pre-incubation with Intralipid® (0.5 and 2%) was found to dose-dependently induce endothelial dysfunction, in that it elicited a significant reduction in ACh-induced vasorelaxation by 29% and 35%, respectively. Paradoxically, this occurred with a concomitant increase in endothelial nitric oxide synthase (eNOS) activity. No such reduction in vasorelaxation by Intralipid® was seen in response to the NO donor sodium nitroprusside (SNP), revealing an endothelium-dependent vascular dysfunction by Intralipid®. However, exenatide did not protect against Intralipid®-induced endothelial dysfunction. More surprisingly, the maximum vasorelaxation induced by exenatide (without Intralipid®) was only 3 ± 2%, compared to the 23 ± 4%, 38 ± 4%, 79 ± 3% and 97 ± 4% relaxations induced by GLP-1, GLP-1 (9-36), ACh and SNP, respectively. This unexpected finding prompted us to ascertain that the exenatide preparation was biologically active, and both exenatide (10− 11 mol/l) and GLP-1 (10− 9 mol/l) significantly increased insulin secretion in pancreatic β-cells from ob/ob mice in vitro. In conclusion, exenatide could neither confer any acute protective effects against triglyceride-induced endothelial dysfunction nor exert any significant vasorelaxant actions in this model of rat conduit arteries ex vivo.  相似文献   

19.
20.
TGR5 is a member of G protein-coupled receptor (GPCR) superfamily, a promising molecular target for metabolic diseases. Activation of TGR5 promotes secretion of glucagon-like peptide-1 (GLP-1), which activates insulin secretion. A series of 2-thio-imidazole derivatives have been identified as novel, potent and orally efficacious TGR5 agonists. Compound 4d, a novel TGR5 agonist, in combination with Sitagliptin, a DPP-4 inhibitor, has demonstrated an adequate GLP-1 secretion and glucose lowering effect in animal models, suggesting a potential clinical option in treatment of type-2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号