首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7) or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling), which may underlie the weight bearing locomotion observed in the apparent absence of axons bridging the lesion site in P28-injured Monodelphis.  相似文献   

2.
A series of studies has examined the response of the spinal cord to lesions made at various stages prior to and after metamorphic climax in the clawed frog Xenopus laevis. Complete transections made between Nieuwkoop and Faber (1956) stages 50 and 62 were followed by gradual recovery of righting and coordinated swimming as animals metamorphosed into juveniles (stage 66). Examination of descending axonal projections using horseradish peroxidase (HRP) showed fibers crossing the lesion site and distributing to the caudal lumbar spinal cord. These fibers could be traced from more rostral spinal segments as well as from brainstem injections of HRP. No evidence for rostrally projecting fibers crossing the lesion was obtained. Juvenile frogs of varying ages failed to demonstrate recovery of coordinated swimming or reconstitution of spinal descending pathways. In an additional series of animals, spinal transections were made within 1 or 2 days of tail resorption to assess whether regenerative capacities extended at all into post-metamorphic stages. No evidence for regeneration was found. Studies of metamorphosing frogs after spinal transections showed that fibers crossed the lesion within 5-12 days of transection, well prior to the end of metamorphic climax; however, in some cases in which metamorphosis seemed arrested, little regeneration was observed. Immunocytochemical studies showed that fibers containing serotonin (5-HT) were included in the population of axons that rapidly crossed the lesion after transection at metamorphic stages. These results are compared to those for lesions of the dorsal columns and other systems in developing and juvenile Xenopus. It is suggested that both metamorphosis-related hormonal changes, and axon substrate pathways, may affect the regenerative response in the Xenopus central nervous system (CNS).  相似文献   

3.
Steps during the development of the zebrafish locomotor network.   总被引:1,自引:0,他引:1  
This review summarizes recent data from our lab concerning the development of motor activities in the developing zebrafish. The zebrafish is a leading model for studies of vertebrate development because one can obtain a large number of transparent, externally and rapidly developing embryos with motor behaviors that are easy to assess (e.g. for mutagenic screens). The emergence of embryonic motility was studied behaviorally and at the cellular level. The embryonic behaviors appear sequentially and include an early, transient period of spontaneous, alternating tail coilings, followed by responses to touch, and swimming. Patch clamp recording in vivo revealed that an electrically coupled network of a subset of spinal neurons generates spontaneous tail coiling, whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming and requires input from the hindbrain. Swimming becomes sustained in larvae once serotonergic neuromodulatory effects are integrated. We end with a brief overview of the genetic tools available for the study of the molecular determinants implicated in locomotor network development in the zebrafish. Combining genetic, behavioral and cellular experimental approaches will advance our understanding of the general principles of locomotor network assembly and function.  相似文献   

4.
In frogs sensory axons from the lumbar dorsal roots ascend in the dorsal column of the spinal cord to terminate in the medulla and cerebellum. The response of these axons to complete transection of the thoracic spinal cord has been analysed in Rana temporaria tadpoles at different stages of development. The presence and position of dorsal column axons were assessed by using the anterograde transport of horseradish peroxidase or by electrophysiological methods. Before developmental stage VIII, dorsal column axons can grow across the transection and reach their normal areas of termination in the brainstem. Axons that do cross the transection follow their normal pathways. From stage VIII onwards this capacity for growth is largely lost. These results are discussed in terms of the relation between neurogenesis, axon growth and axonal regeneration.  相似文献   

5.
Mammals fail in sensory and motor recovery following spinal cord injury due to lack of axonal regrowth below the level of injury as well as an inability to reinitiate spinal neurogenesis. However, some anamniotes including the zebrafish Danio rerio exhibit both sensory and functional recovery even after complete transection of the spinal cord. The adult zebrafish is an established model organism for studying regeneration following spinal cord injury, with sensory and motor recovery by 6 weeks post-injury. To take advantage of in vivo analysis of the regenerative process available in the transparent larval zebrafish as well as genetic tools not accessible in the adult, we use the larval zebrafish to study regeneration after spinal cord transection. Here we demonstrate a method for reproducibly and verifiably transecting the larval spinal cord. After transection, our data shows sensory recovery beginning at 2 days post-injury (dpi), with the C-bend movement detectable by 3 dpi and resumption of free swimming by 5 dpi. Thus we propose the larval zebrafish as a companion tool to the adult zebrafish for the study of recovery after spinal cord injury.  相似文献   

6.
Abstract. Access to the ventral nerve cord in living specimens of Lumbriculus variegatus , an aquatic oligochaete, is normally impossible because surgical invasion induces segmental autotomy (self-fragmentation). We show here that nicotine is a powerful paralytic agent that reversibly immobilizes worms, blocks segmental autotomy, and allows experimental access to the nerve cord. Using nicotine-treated worms, we transected the ventral nerve cord and used non-invasive electrophysiological recordings and behavioral analyses to characterize the functional recovery of giant nerve fibers and other reflex pathways. Initially, after transection, medial giant fiber (MGF) and lateral giant fiber (LGF) spikes conducted up to, but not across, the transection site. Reestablishment of MGF and LGF through-conduction across the transection site occurred as early as 10 h (usually by 20 h) after transection. Analyses of non-giant-mediated behavioral responses (i.e., helical swimming and body reversal) were also made following nerve cord transection. Immediately after transection, functional reorganization of touch-evoked locomotor reflexes occurred, so that the two portions of the worm anterior and posterior to the transection site were independently capable of helical swimming and body reversal responses. Similar reorganization of responses occurred in amputated body fragments. Reversion back to the original whole-body pattern of swimming and reversal occurred as early as 8 h after transection. Thus, functional restoration of the non-giant central pathways appeared slightly faster than giant fiber pathways. The results demonstrate the remarkable plasticity of locomotor reflex behaviors immediately after nerve cord transection or segment amputation. They also demonstrate the exceptional speed and specificity of regeneration of the central pathways that mediate locomotor reflexes.  相似文献   

7.
8.
Recently evidence was presented that, following transection, spinal cords of larval lampreys could regenerate functional connections. The demonstration in isolated spinal cord-notochord preparations consisted of fictive swimming coordinated across the lesion site. In the study reported here curare was added to the bath to eliminate the possible contribution from reflexes mediated by contractions from any remaining muscle fibers attached to the notochord. Coordination remained in the presence of curare, adding further evidence that indeed the regenerated fibers formed functionally appropriate connections.  相似文献   

9.
Adult zebrafish has a remarkable capability to recover from spinal cord injury,providing an excellent model for studying neuro-regeneration. Here we list equipment and reagents,and give a detailed protocol for complete transection of the adult zebrafish spinal cord. In this protocol,potential problems and their solutions are described so that the zebrafish spinal cord injury model can be more easily and reproducibly performed.In addition,two assessments are introduced to monitor the success of the surgery and functional recovery:one test to assess free swimming capability and the other test to assess extent of neuroregeneration by in vivo anterograde axonal tracing.In the swimming behavior test,successful complete spinal cord transection is monitored by the inability of zebrafish to swim freely for 1 week after spinal cord injury,followed by the gradual reacquisition of full locomotor ability within 6 weeks after injury.As a morphometric correlate,anterograde axonal tracing allows the investigator to monitor the ability of regenerated axons to cross the lesion site and increasingly extend into the gray and white matter with time after injury,confirming functional recovery.This zebrafish model provides a paradigm for recovery from spinal cord injury,enabling the identification of pathways and components of neuroregeneration.  相似文献   

10.
1. Fictive swimming is an experimental model to study early motor development. As vestibular activity also affects the development of spinal motor projections, the present study focused on the question whether in Xenopus laevis tadpoles, the rhythmic activity of spinal ventral roots (VR) during fictive swimming revealed age-dependent modifications after hypergravity exposure. In addition, developmental characteristics for various features of fictive swimming between stages 37/38 and 47 were determined. Parameters of interest were duration of fictive swimming episodes, burst duration, burst frequency (i.e., cycle length), and rostrocaudal delay. 2. Ventral root recordings were performed between developmental stage 37/38, which is directly after hatching and stage 47 when the hind limb buds appear. The location of recording electrodes extended from myotome 4 to 17. 3. Hypergravity exposure by 3 g-centrifugation lasted 9 to 11 days. It started when embryos had just terminated gastrulation (stage 11/19-group), when first rhythmical activity in the ventral roots appeared (stage 24/27-group), and immediately after hatching (stage 37/41-group). Ventral root recordings were taken for 8 days after termination of 3 g-exposure. 4. Between stage 37/38 (hatching) and stage 47 (hind limb bud stage) burst duration, cycle length and rostrocaudal delay recorded between the 10th and 14th postotic myotome increased while episode duration decreased significantly. In tadpoles between stage 37 and 43, the rostrocaudal delay in the proximal tail part was as long as in older tadpoles while in caudal tail parts, it was shorter. During this period of development, there was also an age-dependent progression of burst extension in the proximal tail area that could not be observed between the 10th and 14th myotome. 6. After termination of the 3 g-exposure, the mean burst duration of VR activity increased significantly (p < 0.01) when 3 g-exposure started shortly after gastrulation but not when it started thereafter. Other parameters for VR activity such as cycle length, rostrocaudal delay and episode duration were not affected by this level of hypergravity. 7. It is postulated that (i) functional separation of subunits responsible for intersegmental motor coordination starts shortly after hatching of young tadpoles; and that (ii) gravity exerts a trophic influence on the development of the vestibulospinal system during different periods of embryonic development leading to the formation of more rigid neuronal networks earlier in the spinal than in the ocular projections.  相似文献   

11.
The anatomy of the developing zebrafish spinal cord is relatively simple but, despite this simplicity, it generates a sequence of three patterns of locomotive behaviors. The first behavior exhibited is spontaneous movement, then touch-evoked coiling, and finally swimming. Previous studies in zebrafish have suggested that spontaneous movements occur independent of supraspinal input and do not require chemical neurotransmission, while touch-evoked coiling and swimming depend on glycinergic neurotransmission as well as supraspinal input. In contrast, studies in other vertebrate preparations have shown that spontaneous movement requires glycine and other neurotransmitters and that later behaviors do not require supraspinal input. Here, we use lesion analysis combined with high-speed kinematic analysis to re-examine the role of glycine and supraspinal input in each of the three behaviors. We find that, similar to other vertebrate preparations, supraspinal input is not essential for spontaneous movement, touch-evoked coiling, or swimming behavior. Moreover, we find that blockade of glycinergic neurotransmission decreases the rate of spontaneous movement and impairs touch-evoked coiling and swimming, suggesting that glycinergic neurotransmission plays critical yet distinct roles for individual patterns of locomotive behaviors.  相似文献   

12.
The development and properties of locomotor behaviors in zebrafish embryos raised at 28.5°C were examined. When freed from the chorion, embryonic zebrafish showed three sequential stereotyped behaviors: a transient period of alternating, coiling contractions followed by touch-evoked rapid coils, then finally, organized swimming. The three different behaviors were characterized by video microscopy. Spontaneous, alternating contractions of the trunk appeared suddenly at 17 h postfertilization (hpf), with a frequency of 0.57 Hz, peaked at 19 hpf at 0.96 Hz, and gradually decreased to <0.1 Hz by 27 hpf. Starting at 21 hpf, touching either the head or the tail of the embryos resulted in vigorous coils. The coils accelerated with development, reaching a maximum speed of contraction before 48 hpf, which is near the time of hatching. After 27 hpf, touching the embryos, particularly on the tail, could induce partial coils (instead of full coils). At this time, embryos started to swim in response to a touch, preferentially to the tail. The swim cycle frequency gradually increased with age from 7 Hz at 27 hpf to 28 Hz at 36 hpf. Lesions of the central nervous system rostral to the hindbrain had no effect on the three behaviors. Lesioning the hindbrain eliminated swimming and touch responses, but not the spontaneous contractions. Our observations suggest that the spontaneous contractions result from activation of a primitive spinal circuit, while touch and swimming require additional hindbrain inputs to elicit mature locomotor behaviors. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 622–632, 1998  相似文献   

13.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

14.
The anatomy of the developing zebrafish spinal cord is relatively simple but, despite this simplicity, it generates a sequence of three patterns of locomotive behaviors. The first behavior exhibited is spontaneous movement, then touch‐evoked coiling, and finally swimming. Previous studies in zebrafish have suggested that spontaneous movements occur independent of supraspinal input and do not require chemical neurotransmission, while touch‐evoked coiling and swimming depend on glycinergic neurotransmission as well as supraspinal input. In contrast, studies in other vertebrate preparations have shown that spontaneous movement requires glycine and other neurotransmitters and that later behaviors do not require supraspinal input. Here, we use lesion analysis combined with high‐speed kinematic analysis to re‐examine the role of glycine and supraspinal input in each of the three behaviors. We find that, similar to other vertebrate preparations, supraspinal input is not essential for spontaneous movement, touch‐evoked coiling, or swimming behavior. Moreover, we find that blockade of glycinergic neurotransmission decreases the rate of spontaneous movement and impairs touch‐evoked coiling and swimming, suggesting that glycinergic neurotransmission plays critical yet distinct roles for individual patterns of locomotive behaviors. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

15.
To examine the involvement of supraspinal inputs in the maturation of motor activity patterns in the developing fetal lamb, we recorded spontaneous electromyographic activity from spinally innervated muscles at approximately 45, 65, and 95 days gestation (G45, G65, and G95; term = 147 days). At G45, fetal activity occurred in synchronized activity-inactivity cycles of approximately 2 min duration, with the activity phase lasting 22.2 ± 4.8 s and the inactivity phase lasting 95.4 ± 13.3 s (mean ± standard error of the mean, n = 5). At G65 and G95, the organization of activity was clearly different from that at G45 in that it was no longer cyclic, nor was the discharge of different muscles synchronized. By contrast, after spinal cord transection at G62, synchronised cyclic activity occurred in muscles innervated by segmental levels below the transection, both at G65 and G95. At G65 the duration of the activity phase of the cycle was 53.5 ± 6.0 s, while the inactivity phase lasted 171.6 ± 22.1 s; these durations did not alter between G65 and G95. Since spinal cord transection leads to the motor behavior of the G65 fetus reverting to the cyclic pattern characteristic of the G45 fetus, we conclude that supraspinal inputs begin to modulate the output of the spinal pattern generators at some stage between G45 and G65. The observation that spinally transected fetuses generate identical behavior at G65 and G95, both in terms of its cyclic character and the duration of cycles, suggests that spinal circuits undergo little autonomous development overthis period; that is, the altered behavior observed in the developing intact fetus reflects the influence of supra-spinal inputs on the motor circuits of the spinal cord. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 276–288, 1997  相似文献   

16.
Behaviors of mice given forced-swimming.   总被引:1,自引:0,他引:1  
Behaviors of mice in the forced swimming test are motionlessness, climbing and the other stereotypical behaviors. We observed these behaviors in different ages and sex and in repeated forced swimming trials. The findings were 1) quantities of the climbing and the other behaviors were different with the age and sex, 2) repeated per day forced swimming remarkably increased motionlessness and motionlessness is memorized for at least 14 days, and 3) climbing is the typical opposite behavior of motionlessness and was related to adrenergic but not serotonergic neuronal activity. When these behaviors are recognized as adaptation behaviors, we conclude that mice given repeated forced swimming, but not mice given one trial of forced swimming, can be considered as a model of human depression relating to adrenaline neuronal activity.  相似文献   

17.
Little is known regarding the role of diaphragm small-fiber afferents (groups III and IV) in the control of breathing. This study was designed to determine whether activation of these afferents with use of capsaicin affects phrenic efferent activity. Capsaicin injections into the phrenic artery were made in 10 alpha-chloralose-anesthetized dogs after each of the following procedures performed in succession: bilateral cervical vagotomy, C7 spinal cord transection, bilateral cervical dorsal rhizotomy. In six of these animals injections were also made after C2 spinal cord transection and removal of the cervical spinal cord. Injections made in the vagotomized animals were associated with apneusis followed by hyperpnea. C7 spinal transection eliminated the hyperpneic response, but the apneusis remained. Cervical dorsal rhizotomy or C2 spinal cord transection failed to abolish the apneusis in response to injection. No diaphragm response was obtained after removal of the cervical spinal cord. Experiments in three additional animals showed that capsaicin does not have a direct excitatory effect on the muscle cells of the crural diaphragm, nor does it potentiate the release of neurotransmitter in the diaphragm. The results of this study indicate that small-fiber afferents in the diaphragm have an excitatory effect on phrenic motoneurons. There is a segmental component to this reflex, since the response is observed after C2 spinal cord transection. The data also suggest that at least some of these afferents enter the spinal cord through the ventral roots.  相似文献   

18.
Implanted neural stem cells (NSC) could improve neurological functions following spinal cord injury (SCI), but the optimal conditions for NSC transplantation are largely unknown, especially in transected spinal cord. This study investigated the effect and fate of NSC engrafted into spinal cords at different locations and time points following T9 spinal cord transection. Engrafted NSC could survive and migrate in host spinal cords. Significant improvement in hindlimb locomotor functions associated with NSC survival was found in rats receiving NSC transplantation in the spinal cords rostral to the transection site at the subacute stage (7 days post operation), compared with those caudal to the transection site at the acute stage (at the time of injury). At 4 weeks post operation, CD68 immunohistochemical staining confirmed that macrophages were less in rostrally transplanted sites and in subacute groups than seen in caudal and acute transplanted rats. The present findings indicated that NSC transplantation into spinal cords rostral to transection site at the subacute stage is an optimal strategy for engrafted NSC survival and host behavioral improvement. It therefore would be available to the usage of NSC for the treatment of SCI in the future clinic trial.  相似文献   

19.
During the first 24 h of post-embryonic development in Xenopus laevis, a rapid change in the neural activity underlying swimming occurs in which the duration of ventral root discharge on each cycle increases from a single compound impulse to discrete bursts of activity. Moreover, this change in motor output progresses rostrocaudally, suggesting that it could result from the influence of a descending neural pathway upon the spinal rhythm-generating circuitry during early post-embryonic development. To begin to examine whether serotonergic neurons of brainstem raphe nuclei might have a role in this swimming development, we have studied the effects of 5-hydroxytryptamine (5HT) on fictive swimming in embryonic and larval animals. As previously demonstrated for other vertebrate locomotor rhythms, we find that bath-applied 5HT enhances the duration of motor activity on each cycle of larval fictive swimming. In addition, our results show that the sensitivity of the swimming rhythm to exogenous 5HT follows a strict rostrocaudal gradient. In young embryos (stages 32-36) 5HT does not affect the duration of ventral root impulses per cycle; by the time of hatching (stage 37/38), rostral but not caudal discharge is enhanced, and by stage 42 (24 h post-hatching) 5HT can increase motor burst durations along most of the length of the animal. These reversible changes induced by bath-applied 5HT closely resemble the normal rostrocaudal development of burst discharge during swimming in animals some 12 h older.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity measured in the ventral and dorsal part of the dog spinal cord (L6-S2) and in the stumps of the sciatic nerve 5, 10, 15 and 21 days after its transection were compared with the corresponding activities in the intact contralateral nerve and in sham-operated animals. AChE was also examined histochemically. Changes in the enzyme activities in the central nerve stump were correlated with activity changes in the spinal cord. In the central nerve stump, a marked (25%) increase in AChE activity was found on the fifth day after transection, but by the 21st day it fell below control value levels; up to the 15th day it showed good correlation with AChE activity in the ventral spinal cord. Histochemically, pronounced reduction of enzymatic activity was found in the ipsilateral part of the spinal cord. On the 15th day, ChAT activity in the ventral spinal cord was also significantly decreased and the accumulation of the enzyme in the central nerve stump was negligible. On the contrary, at the last 21-day interval examined, a significant increase in ChAT activity and a nonsignificant increase in AChE activity was found in the spinal cord, but their activities in the central nerve stump were decreased. In the degenerated peripheral nerve stump ChAT activity dropped by an average of 99% and AChE activity by 48% during the first 15 days after transection but, on the 21st day, AChE activity was 22% higher than at the preceding interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号