首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PGH3 was biosynthesised from all-cis-5,8,11,14,17-eicosapentaenoic acid (20:5ω3) by an acetone-pentane powder of ram seminal vesicles and its structure was confirmed by GLC-MS after its reduction to PGF3α. PGH3 was transformed by horse platelet microsomes to TXB3, and by aortic microsomes to Δ17-6-keto-PGF1α. The structures of these compounds were confirmed by GLC-MS.  相似文献   

2.
Glutathione S-transferases (GSTs) purified from both rat liver cytosol and microsomes catalyzed the direct reduction of PGH2 to PGF2 alpha. As much as 40% of the substrate was transformed into a prostanoid whose Rf value corresponded to that of PGF2 alpha. The identification of the reaction product as PGF2 alpha was confirmed by TLC and reverse-phase HPLC as well as by mass spectral analysis. In the absence of GSTs, PGH2 was found to be primarily converted to PGE2 and PGD2. Also, PGF2 alpha formation was completely abolished by decylglutathione, a potent inhibitor of both peroxidase and transferase activity associated with GSTs. These results indicate that the direct reduction of endoperoxide moiety of PGH2 to form PGF2 alpha is an enzymatic process. Interestingly, selenium-dependent glutathione peroxidase (Se-GSH-Px) showed very little PGF2 alpha formation from PGH2. However, this enzyme was very active in the reduction of PGG2 to PGH2. In contrast, GSTs were very poor in the conversion of PGG2 to PGH2. Therefore, it is possible that the relative tissue distribution of Se-GSH-Px and GSTs might play an important role in the tissue specific synthesis of PGF2 alpha.  相似文献   

3.
The metabolism of PGH2 by human lung parenchymal microsomes was characterized by radiometric high performance liquid chromatography and compared with metabolism by pig, bovine, rat, mouse, and guinea pig lung microsomes. Microsomes from human lung synthesized 0.74 nmoles/mg protein and 0.72 nmoles/mg protein, PGI2 (6-Keto-PGF1 alpha) and TxA2 (TxB2) respectively, upon incubation with 4.0 nmoles of PGH2. Pig, bovine, rat, mouse, and guinea pig microsomes respectively synthesized 1.0, 1.0, 0.9, 0.4, and 0.1 nmoles of PGI2/mg protein, and 0.9, 1.0, 0.7, 0.3, 1.8 nmoles of TxA2/mg protein, and preparations formed some PGE2, PGF2 alpha, and PGD2. Mouse lung microsomes were unique in synthesizing PGE2 as the major prostaglandin. The thromboxane synthetase inhibitor 1-benzylimidazole was a specific inhibitor in these six species.  相似文献   

4.
Incubations of PGG2 with aortic microsomes yielded two products which were not formed in boiled enzyme control, one of which was 6-oxo-PGF1 alpha. The major metabolite was identified by gas-liquid chromatography-mass spectrometry as 6,15-dioxo-PGF1 alpha. Thus, unlike PGH2, PGG2 is probably converted to 15-hydroperoxy PGI2 which subsequently decomposes to 6, 15-dioxo-PGF1 alpha.  相似文献   

5.
Metabolism of prostaglandin endoperoxide by microsomes from cat lung   总被引:1,自引:0,他引:1  
It has been reported that the prostaglandin (PG) precursor, arachidonic acid, produces divergent hemodynamic responses in the feline pulmonary vascular bed. However, the pattern of arachidonic acid products formed in the lung of this species is unknown. In order to determine the type and activity of terminal enzymes in the lung, prostaglandin biosynthesis by microsomes from cat lung was studied using the prostaglandin endoperoxide, PGH2, as a substrate. The major products of incubations of PGH2 with microsomes were thromboxane (TX) B2 (the major metabolite of TXA2), 6-keto-PGF1 alpha (the breakdown product of PGI2) and 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Formation of TXB2 was markedly reduced by imidazole. Tranylcypromine decreased the formation of TXB2 and HHT and inhibited the formation of 6-keto-PGF1 alpha. At low PGH2 concentrations, equal production of TXB2 and 6-keto-PGF1 alpha was observed. However, as PGH2 concentration increased, 6-keto-PGF1 alpha production approached early saturation while TXB2 production increased in a linear fashion. These results suggest that enzymatic formation of TXA2 and PGI2 is a function of substrate availability in the lung. These findings provide a possible explanation for the divergent hemodynamic responses to arachidonic acid infusions at high and low concentrations in the feline pulmonary vascular bed.  相似文献   

6.
On the mechanism of prostacyclin and thromboxane A2 biosynthesis   总被引:3,自引:0,他引:3  
The present research describes studies which address the mechanism of prostacyclin (PGI2) and thromboxane A2 (TXA2) biosynthesis. In addition to prostaglandin H1 (PGH1), PGG2, PGH2, and PGH3, also 8-iso-PGH2, 13(S)-hydroxy-PGH2, and 15-keto-PGH2 were applied to determine the substrate specificities and kinetics of prostacyclin and thromboxane synthase in more detail. Human platelet thromboxane synthase converted PGH1, 8-iso-PGH2, 13(S)-hydroxy-PGH2 and 15-keto-PGH2 into the corresponding heptadecanoic acid (C17) plus malondialdehyde, whereas the thromboxane derivative was formed only from PGG2, PGH2, and PGH3 together with the corresponding C17 metabolite and malondialdehyde in a 1:1:1 ratio. In contrast, PGG2, PGH2, 13(S)-hydroxy-PGH2, 15-keto-PGH2 and PGH3 were almost completely isomerized to the corresponding prostacyclin derivative by bovine aortic prostacyclin synthase, whereas PGH1 and 8-iso-PGH2 only produced the corresponding C17 hydroxy acid plus malondialdehyde. Isotope-labeling experiments with [5,6,8,9,11,12,14,15-2H]PGH2 revealed complete retention of label and no isotope effect in the course of thromboxane biosynthesis, but the loss of one 2H atom at C-6 with an isotope effect of 1.20 during PGI2 formation. Prostacyclin and thromboxane synthase bind both 9,11-epoxymethano-PGF2 alpha and 11,9-epoxymethano-PGF2 alpha at the heme iron, but according to their difference spectra in opposite ways with respect to the 9- and 11-position. In agreement with published model studies, a cage radical mechanism is proposed for both enzymes according to which the initial radical process is terminated through oxidation of carbon-centered radicals by the iron-sulfur catalytic site, followed by ionic rearrangement to PGI2 or TXA2. Various Fe(III) model compounds as well as liver microsomes or cytochrome P-450CAM can also form small amounts of PGI2 and TXA2, but mainly yield 12(S)-hydroxy-5,8,10-heptadecatrienoic acid plus malondialdehyde probably by a radical fragmentation pathway.  相似文献   

7.
8.
It has been proposed that thromboxane synthase inhibition (TXSI) may be a useful form of anti-thrombotic therapy and that this is due, in part, to redirection of PGH2 metabolism in favour of PGI2, a potent vasodilator and anti-platelet agent. While redirection has been observed ex vivo there are conflicting reports of its occurrence in vivo. We now describe the characterisation of an acute intravenous challenge model using thrombin, collagen, arachidonic acid (AA) and PGH2 for the study of PGH2 metabolism. Following challenge, plasma concentrations of TXB2, 6-oxo-PGF1 alpha, alleged metabolites of PGI2 (PGI2m) and PGE2 were measured by radioimmunoassay (RIA). Thrombin and collagen challenge resulted in a dose-related increase in plasma TXB2 while AA and PGH2, in addition, elevated 6-oxo-PGF1 alpha and PGI2m. Injection of PGH2 elevated 6-oxo-PGF1 alpha, PGI2m, TXB2 and PGE2 levels. Experimental conditions were defined such that challenge with thrombin (40 NIH units kg-1), collagen (100 micrograms kg-1), AA (1 mg kg-1) and PGH2 (5 micrograms kg-1) and measurement of eicosanoids 0.5 min following challenge were optimal for detection of redirection of PGH2 metabolism in vivo. The identity of immunoreactive TXB2 and 6-oxo-PGF1 alpha was further supported by experiments in which the extracted immunoreactive eicosanoids co-eluted with authentic [3H]standards when subject to reverse phase high performance liquid chromatography (RPHPLC). Evidence is also presented that the levels of plasma eicosanoids measured in this model reflect in vivo biosynthesis.  相似文献   

9.
When prostaglandin H2 (PGH2) was incubated with a mixture of glutathione S-transferases (GSTs) obtained from S-hexylglutathione affinity chromatography, as much as 40% of it was transformed into a prostanoid whose Rf value corresponded to that of the standard PGF2 alpha. The reaction product was identified as PGF2 alpha by cochromatography with a standard on TLC and HPLC. The stereochemistry of the hydroxyl groups on C-9 and C-11 of the cyclopentane ring was confirmed by mass-spectral analysis of the butylboronate derivative of the reaction product. Neither PGE2 nor PGD2 could substitute for PGH2 in the reaction mixture, indicating that the mechanism of formation of PGF2 alpha is a direct two-electron reduction of the endoperoxide moiety and not through a reduction of the keto group on PGE2 or PGD2. Individual GST isozymes exhibited distinct differences in their catalytic rates of formation of PGF2 alpha from PGH2. Among various GSTs, isozyme IV, a homodimer of Ya size subunit showed the highest activity with a Vmax value of approximately 6000 nmol.min-1.mg-1. In general, the isozymes containing Ya and Yc subunits exhibited relatively high activity toward PGH2, indicating that it is the non-selenium-dependent glutathione peroxidase activity associated with the GSTs that might be responsible for the reduction of PGH2 to PGF2 alpha. Interestingly, isozyme IV also exhibited the highest PGE2 forming activity with a Vmax value of approximately 3000 nmol.min-1.mg-1 followed by isozyme I, a homodimer of Yb subunit, which had a Vmax value of 420 nmol.min-1.mg-1. Based on these results, it appears that the GSTs play an important role in the biosynthesis of classical PGs. Therefore, it is conceivable that the tissue-specific formation of PGF2 alpha and PGE2 might, in part, be due to the relative distribution of these enzyme activities in a given tissue. Our results have not only confirmed the previously published reports (E. Christ-Hazelhof et al. (1976) Biochim. Biophys. Acta 450, 450-461), but also have characterized the specificity of GST isozymes in the formation of PGF2 alpha.  相似文献   

10.
Arachidonic acid metabolism produces several biologically important compounds including the leukotrienes and prostaglandins. Prostaglandin H2 (PGH2) is the first metabolite in the arachidonic acid cascade leading to all other prostaglandins. Pivotal to our understanding of PGH2's biology is the ability to separate it in pure form from the numerous other arachidonic acid metabolites produced in a biological milieu. The extensive literature on PGH2 biology and metabolism has relied almost exclusively on the traditional method of separation using gravity flow silicic acid columns. In our hands, such PGH2 preparations were found to contain varying amounts of 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT), PGE2, PGF2 alpha and other minor impurities as determined by further chromatographic and mass spectral analyses. Analytical separation of PGH2 and other arachidonic acid metabolites has been accomplished using reversed-phase HPLC. However, the labile nature of this molecule in aqueous systems makes such techniques unacceptable for preparative isolation of high purity PGH2 and has necessitated the development of a totally nonaqueous separation. To this end, we attempted several stationary phases and found that the cyano-bonded phase showed the best selectivity for resolving PGH2 from its major contaminants. Separations were performed on self-packed columns using a hexane-isopropanol gradient. Peaks were detected both by liquid scintillation counting and uv spectrophotometry (214 nm). Structure assignments were made by chromatographic comparison with authentic standards (PGF2 alpha, PGE2), biological activity (PGH2--platelet aggregation), and by ammonia direct chemical ionization mass spectrometry (HHT, hydroxy-5,8,10,14-eicosatetraenoic acid, PGH2, PGE2, PGF2 alpha). The latter technique, which by its very nature volatilizes all organic material in the sample, was particularly useful in determining not only that the PGH2 preparations were free from the aforementioned side products, but that they were also free from lipid, protein, and other potential residues frequently found in biological preparations.  相似文献   

11.
Concentrations of prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH synthase) and prostacyclin synthase (PGI synthase) were quantified with specific radioimmunometric assays inhuman myometrium during the last trimester of pregnancy (n=23) and in non-pregnant controls (n=8). Pregnant myometrium contained 3 times more PGH synthase per mg microsomal protein than non-pregnant myometrium (p < 0.01) but there was no increase with increasing gestational age in the third trimester nor with the onset of labor. In pregnancy, as compared to the non-pregnant state, there was no significant change in the PGI synthase content of myometrial microsomes, but significantly more PGI synthase was recovered in other subcellular fractions (p < 0.01). This suggests that pregnancy affects preferential changes in the subcellular distribution of PGI synthase in myometrial cells.Relative to its PGI synthase content pregnant myometrium contained twice as much PGH synthase as non-pregnant myometrium (p < 0.01). This may offer further evidence that PGH synthase rather than PGI synthase itself is the rate limiting factor in myometrial PGI2 production. On the other hand, the much larger increase in PGH synthase than in PGI synthase in pregnant as compared to non-pregnant myometrium, may serve to promote preferential synthesis of prostaglandins that are potent myometrial stimulants and of critical importance in human parturition.  相似文献   

12.
Differences in binding characteristics between agonists and antagonists for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were examined in rat cultured vascular smooth muscle cells (VSMC). Scatchard analysis indicated the existence of two binding sites for the TXA2/PGH2 agonist, whereas a single class of recognition sites for the receptor antagonists were observed with approximately the same maximum binding capacity (Bmax) as a high-affinity binding site of the agonist. Weak binding inhibition by approx. 100 nM of primary prostanoids (PGE1, PGF2 alpha and PGD2) was detected only with the TXA2/PGH2 agonist, and not with the antagonist. Primary prostanoids as well as TXA2/PGH2 agonists (U46619 and STA2) suppressed the [3H]PGF2 alpha and [3H]PGE1 binding with almost the same potency, whereas TXA2/PGH2 antagonists (S-145, SQ29,548 and ONO3708) did not. The Bmax value of the binding sites was roughly identical in PGF2 alpha, PGE1 and a low-affinity binding site of U46619. These results suggest the existence of two binding sites for TXA2/PGH2 in VSMC, i.e., a high-affinity binding site corresponding to that of the TXA2/PGH2 antagonists and a low-affinity binding site in common with primary prostanoids.  相似文献   

13.
Concentrations of prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH synthase) and prostacyclin synthase (PGI synthase) were quantified with specific radioimmunometric assays in human myometrium during the last trimester of pregnancy (n = 23) and in non-pregnant controls (n = 8). Pregnant myometrium contained 3 times more PGH synthase per mg microsomal protein than non-pregnant myometrium (p less than 0.01) but there was no increase with increasing gestational age in the third trimester nor with the onset of labor. In pregnancy, as compared to the non-pregnant state, there was no significant change in the PGI synthase content of myometrial microsomes, but significantly more PGI synthase was recovered in other subcellular fractions (p less than 0.01). This suggests that pregnancy affects preferential changes in the subcellular distribution of PGI synthase in myometrial cells. Relative to its PGI synthase content pregnant myometrium contained twice as much PGH synthase as non-pregnant myometrium (p less than 0.01). This may offer further evidence that PGH synthase rather than PGI synthase itself is the rate limiting factor in myometrial PGI2 production. On the other hand, the much larger increase in PGH synthase than in PGI synthase in pregnant as compared to non-pregnant myometrium, may serve to promote preferential synthesis of prostaglandins that are potent myometrial stimulants and of critical importance in human parturition.  相似文献   

14.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

15.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

16.
The secretion of both glucagon and insulin by the isolated perfused rat pancreas was significantly stimulated by 10(-7) M PGH2. Experiments to show that the stimulated secretion was mediated by conversion of PGH2 to TXA2 or TXB2 revealed no correlation between the amount of secretion and the amount of thromboxane formed. Conversion of PGH2 with a crude platelet thromboxane synthase preparation caused a progressive loss of ability to secret insulin, whereas the capacity to stimulate release of glucagon remained at about one-half the maximal level. This relatively stable and selective secretagogue action on the alpha-cells appeared to be due to the formation of PGD2 by the platelet preparation. Direct administration of PGD2 confirmed this interpretation and showed clearly that this prostaglandin is a potent secretagogue for glucagon with little activity in stimulating the release of insulin. Our results have shown high and relatively equal stimulation of secretion by alpha- and beta-cells with exogenous PGE2, PGF2 alpha, and PGH2, little or no secretion by either cell type with TXA2, TXB2, or PGI2, and a unique selective stimulatory action of PGD2 upon the alpha-cell.  相似文献   

17.
Prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH sythase) and prostacyclin synthase (PGI synthase were quantitated with specific immunoradimetric assays in microsomes from human placentae (n=20) obtained from 7 up to 17 weeks of gestation. Over that period, wherein trophoblastic invasion of the uterine spiral arteries occurs, the placetae showed a significant increase in concentrations of PGH synthase (r=0.73, p<0.001; n=20), but not in those of PGI synthase. While the variation between individual placentae was much larger for PGI synthase than for PGH synthase concentrations, there was no evidence for a large excess of PGI synthase over that of PGH synthase in any of these early placentae. The data indicate, first, that the developing placenta contains PGI synthase, but in amount which are relatively small and do not appear to increase with advancing gestation. Second, they seem to indicate that the capacity for bioconversion of arachidonic acid into prostaglandin endoperoxides increases markedly with placental development.  相似文献   

18.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

19.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

20.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号