首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gu BW  Fan JM  Bessler M  Mason PJ 《Aging cell》2011,10(2):338-348
Mutations in DKC1, encoding telomerase associated protein dyskerin, cause X-linked dyskeratosis congenita (DC), a bone marrow (BM) failure, and cancer susceptibility syndrome. Decreased accumulation of telomerase RNA resulting in excessive telomere shortening and premature cellular senescence is thought to be the primary cause of disease in X-linked DC. Affected tissues are those that require constant renewal by stem cell activity. We previously showed that in Dkc1(Δ15) mice, which contain a mutation that is a copy of a human mutation causing DC, mutant cells have a telomerase-dependent proliferative defect and increased accumulation of DNA damage in the first generation before the telomeres are short. We now demonstrate the presence of the growth defect in Dkc1(Δ15) mouse embryonic fibroblasts in vitro and show that accumulation of DNA damage and levels of reactive oxygen species increase with increasing population doublings. Treatment with the antioxidant, N-acetyl cysteine (NAC), partially rescued the growth disadvantage of mutant cells in vitro and in vivo. Competitive BM repopulation experiments showed that the Dkc1(Δ15) mutation is associated with a functional stem cell defect that becomes more severe with increasing age, consistent with accelerated senescence, a hallmark of DC hematopoiesis. This stem cell phenotype was partially corrected by NAC treatment. These results suggest that a pathogenic Dkc1 mutation accelerates stem cell aging, that increased oxidative stress might play a role in the pathogenesis of X-linked DC, and that some manifestations of DC may be prevented or delayed by antioxidant treatment.  相似文献   

2.
In this study, we report on a family with X-linked dyskeratosis congenita (DC). Linkage analysis with markers in the factor VIII gene at Xq28 yielded a LOD score of 2 at a recombination of 0. Clinical manifestations of DC, such as skin lesions following the Blaschko lines, were present in two obligate carrier females. Highly skewed X inactivation was observed in white blood cells, cultured skin fibroblasts, and buccal mucosa from female carriers of DC in this family. This suggests a critical role for the DC gene in bone marrow-cell and fibroblast-cell proliferation.  相似文献   

3.
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.  相似文献   

4.
Dyskeratosis congenita (DC) is a severe, inherited, bone marrow failure syndrome, with associated cutaneous and noncutaneous abnormalities. DC patients also show signs of premature ageing and have an increased occurrence of cancer. DC can originate through: (1) mutations in DKC1, which result in X-linked recessive DC; (2) mutations in the RNA component of telomerase (TERC), which result in autosomal dominant DC (AD-DC); and (3) mutations in other, currently uncharacterized, genes, which result in autosomal recessive DC (AR-DC). As DKC1 encodes dyskerin, a protein component of small nucleolar ribonucleoprotein (snoRNP) particles, which are important in ribosomal RNA processing, DC was initially described as a disorder of defective ribosomal biogenesis. Subsequently, dyskerin and TERC were shown to closely associate with each other in the telomerase complex, and DC has since come to be regarded as a telomerase deficiency disorder characterised by shorter telomeres. These findings demonstrate the importance of telomerase in humans and highlight how its deficiency (through DKC1 and TERC mutations) results in multiple abnormalities including premature ageing, bone marrow failure and cancer. Identification of the gene(s) involved in AR-DC will help to define the pathophysiology of DC further, as well as expand our insights into telomere function, ageing and cancer.  相似文献   

5.
Dyskeratosis congenita (DC) is a multi system bone marrow failure syndrome characterized by muco-cutaneous abnormalities and an increased predisposition to malignancy. It exhibits considerable clinical and genetic heterogeneity. X-linked recessive, autosomal dominant and autosomal recessive forms of the disease are recognized. The X-linked recessive form is due to mutations in dyskerin, which is a component of both small nucleolar ribonuclear protein particles and the telomerase complex. Autosomal dominant DC is due to mutations in the RNA component of telomerase, TERC. As dyskerin and TERC are both components of the telomerase complex and all patients with DC have short telomeres it appears that the principal pathology in DC relates to telomerase dysfunction. The gene or genes involved in the recessive form of DC remain elusive, though genes whose products are required for telomere maintenance remain strong candidates. The study of DC has highlighted the critical role of telomerase and the consequences, including premature aging and malignancy, of its dysfunction.  相似文献   

6.
The polypeptide component of telomerase (TERT) is an attractive candidate for a broadly expressed tumor rejection antigen because telomerase is silent in normal tissues but is reactivated in more than 85% of cancers. Here we show that immunization against TERT induces immunity against tumors of unrelated origin. Immunization of mice with TERT RNA-transfected dendritic cells (DC) stimulated cytotoxic T lymphocytes (CTL), which lysed melanoma and thymoma tumor cells and inhibited the growth of three unrelated tumors in mice of distinct genetic backgrounds. TERT RNA-transfected human DC stimulated TERT-specific CTL in vitro that lysed human tumor cells, including Epstein Barr virus (EBV)-transformed B cells as well as autologous tumor targets from patients with renal and prostate cancer. Tumor RNA-transfected DC were used as surrogate targets in the CTL assays, obviating the difficulties in obtaining tumor cells from cancer patients. In one instance, where a tumor cell line was successfully established in culture from a patient with renal cancer, the patient's tumor cells were efficiently lysed by the CTL. Immunization with tumor RNA was generally more effective than immunization with TERT RNA, suggesting that an optimal immunization protocol may have to include TERT as well as additional tumor antigens.  相似文献   

7.
8.
Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome that displays marked clinical and genetic heterogeneity. The identification of dyskeratosis congenita gene 1 (DKC1) mutations in X-linked recessive patients initially suggested that DC is a defective pseudouridylation disorder. The subsequent identification of mutations in the telomerase RNA component (TERC) of autosomal dominant DC patients together with the discovery that both TERC and the DKC1-encoded protein, dyskerin, are closely associated in the telomerase complex have suggested that the pathophysiology of DC predominantly relates to defective telomere maintenance. Recent discoveries have shown that autosomal dominant DC exhibits disease anticipation and that this is associated with progressive telomere shortening owing to the haplo-insufficiency of TERC.  相似文献   

9.
10.
Wang CL  Liang L  Shen Z  Zou CC  Fu JF  Dong GP 《Genomics》2011,(6):440-444
Genetic mutations have been identified in a modest proportion of patients with combined pituitary hormone deficiency (CPHD). We reported a 3-generation family consisting of 18 members, including 5 affected males (the proband, his 2 brothers, his cousin, and his maternal uncle; III1–III4, II8) suffered with CPHD. MRI of the pituitary gland showed hypoplasia of the pituitary gland in affected members. By 19 STR markers and linkage analysis, we found that the disease gene localized between the DXS987 and DXS1226 markers (LOD score = 2.408, θ = 0). All affected male patients inherited the same haplotype from the female carrier (I4). The proband's mother (II4) and her sister (II3, II6) were obligate female carriers. However, the unaffected males (II7, II9) in the family did not have this haplotype. These observations confirm a new X-linked recessive inherited disease in a Chinese family with CPHD and the pathogenic gene is mapped to Xp22.1–Xp11.  相似文献   

11.
Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients.  相似文献   

12.
To further characterize the development of mast cells from human hemopoietic pluripotent cells we have investigated the expression of telomerase activity in cultured human peripheral blood CD34+ cells, and CD34+ /CD117+ /CD13+ progenitor mast cells selected therefrom, with the idea that induction of telomerase is associated with clonal expansion of CD34+ /CD117+ /CD13+ cells. A rapid increase in telomerase activity preceded proliferation of both populations of cells in the presence of stem cell factor and either IL-3 or IL-6. The induction was transient, and telomerase activity declined to basal levels well before the appearance of mature mast cells. Studies with pharmacologic inhibitors suggested that this induction was initially dependent on the p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase, but once cell replication was underway telomerase activity, but not cell replication, became resistant to the effects of inhibitors. Tumor mast cell lines, in contrast, expressed persistently high telomerase activity throughout the cell cycle, and this expression was unaffected by inhibitors of all known signaling pathways in mast cells even when cell proliferation was blocked for extended periods. These results suggest that the transient induction of telomerase activity in human progenitor mast cells was initially dependent on growth factor-mediated signals, whereas maintenance of high activity in tumor mast cell lines was not dependent on intracellular signals or cell replication.  相似文献   

13.
The ribonucleoprotein, telomerase, is responsible for the maintenance of telomere length in most immortal and cancer cells. Telomerase appears to be a marker of human malignancy with at least 85% of human cancers expressing its activity. In the present study, we examined a series of tumor-derived and in vitro immortalized cell lines for telomerase activity levels, telomere lengths, and expression levels of the RNA and catalytic components of telomerase. We found significant variability in both telomere lengths and telomerase activity in clones from tumor cells. In addition, the levels of telomerase components or telomerase activity were not predictive of telomere length. Data from clonally derived cells suggest that critically shortened telomeres in these tumor-derived cell lines may signal activation of telomerase activity through an increase in the expression of the catalytic subunit of telomerase. Although clones with low telomerase shorten their telomeres over time, their subclones all have high levels of telomerase activity with no telomere shortening. In addition, analysis of early clones for telomerase activity indicates substantial variability, which suggests that activity levels fluctuate in individual cells. Our data imply that cell populations exhibit a cyclic expression of telomerase activity, which may be partially regulated by telomere shortening.  相似文献   

14.
15.
A missense mutation in the PUS1 gene affecting a highly conserved amino acid has been associated with mitochondrial myopathy and sideroblastic anemia (MLASA), a rare autosomal recessive oxidative phosphorylation disorder. The PUS1 gene encodes the enzyme pseudouridine synthase 1 (Pus1p) that is known to pseudouridylate tRNAs in other species. Total RNA was isolated from lymphoblastoid cell lines established from patients, parents, unaffected siblings, and unrelated controls, and the tRNAs were assayed for the presence of pseudouridine (Psi) at the expected positions. Mitochondrial and cytoplasmic tRNAs from MLASA patients are lacking modification at sites normally modified by Pus1p, whereas tRNAs from controls, unaffected siblings, or parents all have Psi at these positions. In addition, there was no Pus1p activity in an extract made from a cell line derived from a patient with MLASA. Immunohistochemical staining of Pus1p in cell lines showed nuclear, cytoplasmic, and mitochondrial distribution of the protein, and there is no difference in staining between patients and unaffected family members. MLASA is thus associated with absent or greatly reduced tRNA pseudouridylation at specific sites, implicating this pathway in its molecular pathogenesis.  相似文献   

16.
Myoclonus-dystonia (M-D) is a movement disorder characterized by rapid muscle contractions and sustained twisting and repetitive movements and has recently been associated with mutations in the epsilon-sarcoglycan gene (SGCE). The mode of inheritance is autosomal dominant with reduced penetrance upon maternal transmission, suggesting a putative maternal imprinting mechanism. We present an apparently sporadic M-D case and two patients from an M-D family with seemingly autosomal recessive inheritance. In both families, we detected an SGCE mutation that was inherited from the patients' clinically unaffected fathers in an autosomal dominant fashion. Whereas, in the first family, RNA expression studies revealed expression of only the mutated allele in affected individuals and expression of the normal allele exclusively in unaffected mutation carriers, the affected individual of the second family expressed both alleles. In addition, we identified differentially methylated regions in the promoter region of the SGCE gene as a characteristic feature of imprinted genes. Using a rare polymorphism in the promoter region in a family unaffected with M-D as a marker, we demonstrated methylation of the maternal allele, in keeping with maternal imprinting of the SGCE gene. Loss of imprinting in the patient with M-D who had biallelic expression of the SGCE gene was associated with partial loss of methylation at several CpG dinucleotides.  相似文献   

17.
Mammalian telomeres and telomerase   总被引:20,自引:0,他引:20  
New features of mammalian telomeres and telomerase have been identified. Telomeres form t-loops, which engage the 3' single-stranded DNA overhang in an interaction with double-stranded telomeric repeats. Mammalian telomerases contain an RNA H/ACA motif and associated protein(s) shared with H/ACA family of small nucleolar ribonucleoproteins. Essential roles for telomerase in the sustained viability of cultured tumor cells and in the normal proliferative capacity of human somatic cells have been demonstrated.  相似文献   

18.
Family studies in common variable immunodeficiency   总被引:1,自引:0,他引:1  
The occurrence of cancer, immunodeficiency, and diseases with possible autoimmune aetiology were studied in 355 blood relatives of 12 patients with common variable immunodeficiency (CVID). The family members were identified through the patients and interviewed after completing a questionnaire, their diseases were medically confirmed by local general practitioners. In two families consanguineous marriages were identified with the coefficients of inbreeding of 0.03125 and 0.01563, respectively: one patient, a dizygotic twin of an unaffected sister, was a granddaughter of first cousins, the second patient was the third daughter of second cousins. These cases of CVID strongly support the autosomal recessivity of the underlying genes. One male patient with CVID was shown to be related to a patient with X-linked hypogammaglobulinaemia, both sharing a common carrier. The different clinical courses of their diseases suggest two genetically determined immunodeficiencies and genetic heterogeneity. No family had an unusual clustering of cancer. The occurrence of tumours in the blood relatives of CVID patients was not significantly higher than in the relatives of spouse controls. Immunological examination of 30 first degree relatives of the CVID patients revealed three children (2 males and 1 female) with selective IgA deficiency, in one boy combined with elevated serum IgE level. Four relatives with rheumatoid heart disease, 12 cases of gastric or duodenal ulcer, and 14 relatives with thyroid disease represented the most often encountered diagnoses with a possible autoimmune component in their aetiology.  相似文献   

19.
Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号