首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Active glucagon receptor was solubilized with 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate (Chaps) from rat liver plasma membranes but rapidly (less than 8 h) lost activity. Either inclusion of 1X Hanks' balanced salt solution in the 3 mM Chaps solubilization buffer or its addition after solubilization increased the percentage of total binding attributable to specific glucagon binding from approximately 10 to greater than 80%; of great importance, it increased the stability from near zero binding at 8 h to 50% binding at 48 h (4 degrees C). Of the Hanks' solution components, either NaCl (137 mM) or CaCl2 (1.26 mM) was effective in increasing specific binding to approximately 70 and 60% respectively: Mg salts were ineffective. Soluble receptor binding activity was assayed by dextran-coated charcoal adsorption of free hormone. The assay is rapid, simple, and reproducible. It is suitable for monitoring receptor activity during purification and molecular characterization. Competition binding studies gave an IC50 value of 10-20 nM (slope factor approximately 1), with or without GTP. Dissociation assays revealed GTP sensitivity when receptors were solubilized either as glucagon-receptor complexes or free receptor. Active glucagon-receptor complexes could be eluted from wheat germ lectin-agarose: neither concanavalin A-agarose nor soybean agglutinin-agarose bind receptor. A glucagon degrading activity which co-solubilized with the receptor but did not require detergent for extraction was distinguishable from the soluble receptor not only by solubility but also by its heat stability (30 degrees C), its inhibition by bacitracin, its affinity for glucagon, its retention of activity for at least 1 week at 4 degrees C, and its size.  相似文献   

2.
Adenosine acting through membrane-bound A1 receptors is capable of inhibiting the enzyme adenylate cyclase. A1 adenosine receptors from rat cerebral cortex have been solubilized in high yield and in an active form with the detergent digitonin. The solubilized receptors bind the agonist radioligand (-)-N6-3-[125I] iodo-4-hydroxyphenylisopropyl)adenosine (HPIA) with the same high affinity, demonstrate the same agonist and antagonist potency series and stereo-specificity as the membrane-bound A1 receptor. In addition to maintaining high affinity agonist binding, soluble A1 receptors' affinity for agonists is still modulated by guanine nucleotides. This result contrasts with other adenylate cyclase coupled receptors (beta 2, alpha 2, D2) wherein high affinity agonist binding is lost subsequent to solubilization. To investigate the molecular basis for this difference, solubilized A1 receptors which were labeled with [125I]HPIA either prior to or subsequent to solubilization, were compared by sucrose density gradient centrifugation. Both labeled species demonstrated exactly the same sedimentation properties and display guanine nucleotide sensitivity. This suggests that the same guanine nucleotide-sensitive receptor complex formed in membranes in stable to solubilization and can form a high affinity agonist complex in soluble preparation. The molecular mechanism responsible for the stable receptor complex in this system compared to the beta 2, alpha 2, and D2 systems remains to be determined.  相似文献   

3.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

4.
We investigated the binding characteristics of agonists to alpha 1- and beta-adrenergic receptors of intact liver cells, broken rat liver cell membranes, and detergent-solubilized preparations under varying experimental conditions, focusing on the different "states" of the receptor for agonists and the regulation of these states by temperature and guanine nucleotides. While only low-affinity binding of agonists to both receptor subtypes was evident in studies performed at 37 degrees C with solubilized preparations, biphasic competition curves for agonists were observed in both intact cells and membrane preparations; the majority of sites were of low affinity. In membrane preparations, the nonhydrolyzable GTP analogue Gpp(NH)p caused a rightward shift of agonist competition curves and a loss of high-affinity binding. These results are consistent with the involvement of guanine nucleotide binding proteins in both alpha 1- and beta-adrenergic transduction pathways. When competition studies were performed at 4 degrees C, receptor sites existed predominantly in the high-affinity configuration, in intact cells and membranes, as well as in soluble preparations. In contrast to the studies conducted at 37 degrees C, no Gpp(NH)p-induced conversion to the lower affinity state could be demonstrated in studies performed with membrane preparations at 4 degrees C. Thus, the high-affinity state of alpha 1- and beta-adrenergic receptors is stabilized at 4 degrees C in intact cells, membranes, and soluble preparations. After incubations had been performed at 37 degrees C, high-affinity binding of agonists could not be restored by subsequent incubation at 4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

6.
A1 adenosine receptors were labeled in rat brain sections with the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and visualized at the light microscopic level using autoradiography. The specific binding of [3H]DPCPX to the sections showed the pharmacological characteristics of A1 adenosine receptors and was accompanied by very low levels of nonspecific binding. Whereas GTP had no significant effect on [3H]DPCPX binding to rat brain membranes, the addition of 100 microM GTP increased the apparent affinity of [3H]DPCPX to tissue sections fivefold (from 1.83 to 0.35 nM), enhancing it to the affinity measured in membranes. However, GTP altered neither the binding capacity nor the distribution of binding sites in tissue sections. It is suggested that a competitive antagonism with endogenous adenosine explains the lower affinity of [3H]DPCPX in the absence of GTP. The autoradiographic pattern of [3H]DPCPX binding was characteristic for A1 adenosine receptors. Distinct labeling of the different layers of the cerebellar cortex was shown by photomicrographs generated with the coverslip technique. In addition, several fiber tracts were found to be labeled. The high selectivity for A1 adenosine receptors and low nonspecific binding of [3H]DPCPX, the ability to produce high-resolution autoradiograms, together with the fact that the effects of endogenous adenosine can be eliminated by the addition of GTP make [3H]DPCPX a very useful tool in the autoradiographic study of A1 adenosine receptors.  相似文献   

7.
A1 adenosine receptors and guanine nucleotide-binding proteins (G proteins) solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate have been co-purified from bovine cerebral cortex. A portion of solubilized receptors which displays high affinity GTP-sensitive agonist binding (40-50%) adheres tightly to agonist affinity columns composed of N6-aminobenzyladenosine-agarose. A1 adenosine receptors and G proteins are rapidly and selectively coeluted from agonist columns by the addition of 8-p-sulfophenyltheophylline, but only in combination with Mg2+-GTP or N-ethylmaleimide, agents which lower the affinity of receptors for agonists. Purified receptors and G protein alpha-subunits can be detected with the potent A1-selective antagonist radioligand, [125I]3-(4-amino-3-iodo)phenethyl-1-propyl-8-cyclopentylxanthine (125I-BW-A844U) and [35S]guanosine 5'-3-O-(thio)triphosphate [( 35S]GTP gamma S), respectively. Pretreatment of solubilized receptors with 0.1 mM N-ethylmaleimide or 0.1 mM R-phenylisopropyladenosine abolishes adsorption of receptors and G proteins to affinity columns. Following removal of 8-p-sulfophenyltheophylline and GTP, purified receptors bind agonists (2 sites) and antagonists (1 site) with affinities similar to crude soluble receptors and typical of A1 receptors. Some receptors may be denatured as a result of purification since only 23% of the radioligand binding sites which adhere to the affinity column can be detected in the eluate. The Bmax of purified receptors, 820 +/- 100 pmol/mg protein (n = 3) is 1800-fold higher than crude soluble receptors. The specific activity of [35S]GTP gamma S binding sites in affinity column eluates is 4640 pmol/mg protein. Assuming a 1:1 stoichiometry, this specific activity indicates that receptor-G protein complexes are greater than 50% pure following affinity chromatography. The photoaffinity labeled purified receptor was identified by polyacrylamide gel electrophoresis as a single band with a molecular mass of 35 kDa which when deglycosylated undergoes a characteristic shift in molecular mass to a sharp band at 32 kDa. In addition to the receptor, silver staining revealed polypeptides with molecular masses of 39 and 41 kDa, which are ADP-ribosylated by pertussis toxin, and 36 kDa corresponding to G protein beta-subunits.  相似文献   

8.
The affinity of agonists but not antagonists at hepatic membrane alpha 1-adrenergic receptors is temperature dependent; a 100-fold higher affinity is observed at 4 degrees C than at 37 degrees C. The relationship between these two agonist affinity states was investigated by using a strategy that allows the kinetics of this transition to be examined under equilibrium conditions. When competition assays are performed at 37 degrees C for varying intervals and the reaction mixture is then rapidly cooled by freezing, allowed to thaw, and further equilibrated at 4 degrees C, a rapid and progressive decrease (t1/2 of 1-2 min) in agonist affinity occurs, the extent of which is directly related to the incubation time at 37 degrees C. This decrease in agonist affinity is sustained as long as agonist is present but can be reversed by its subsequent removal. In contrast, no change in affinity is seen in identical experiments when antagonists are employed as the competing ligand. High-affinity binding of agonists is also demonstrated in short-term nonequilibrium experiments, indicating that the low-temperature incubations do not induce, but rather stabilize, a receptor conformation of high affinity for agonists. These findings suggest that the predominantly low-affinity binding of agonists to alpha 1-adrenergic receptors demonstrated in equilibrium studies at physiological temperatures may be the result of a ligand-driven decrease in affinity. Since the transition in receptor affinity for agonists occurs not only in broken-cell preparations but also after detergent solubilization of the membrane receptor, it most likely is due to an agonist-induced change in the conformation of the receptor protein per se.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist [3H]BK and the antagonist [3H]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for [3H]BK and a Kd of 3.8 nM for the antagonist [3H]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left [3H]NPC17731 binding unaffected, but reduced the receptor affinity for [3H]BK to a Kd of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C. The rank order of the guanosine nucleotides for [3H]BK binding reduction was GTP[gammaS] = Gpp[NH]p > GTP = GDP > GDP[betaS]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed.  相似文献   

10.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

11.
A radiolabeled N-(3-aminopropyl)-leukotriene B4 amide ([3H]LTB4-APA) analog of the potent leukocyte chemotactic factor leukotriene B4 (LTB4) binds to receptors for LTB4 in plasma membrane-enriched preparations from human blood polymorphonuclear leukocytes (PMNL) and intact PMNL with respective mean dissociation constants of 2.3 nM and 69 nM at 4 degrees C. The [3H]LTB4-APA bound to plasma membrane-enriched preparations from PMNL was covalently cross-linked to membrane proteins with disuccinimidyl suberate. Solubilization and resolution by SDS-PAGE of proteins from [3H]LTB4-APA-labeled PMNL membranes revealed predominant labeling of a 60-kDa protein. Labeling of the PMNL membrane protein was inhibited by LTB4 and its analogs at concentrations similar to those inhibiting the binding of [3H]LTB4 to its receptor, with an identical rank order of potency of LTB4 greater than 20-hydroxy-LTB4 greater than LTB4-APA = 5(S),12(R)-dihydroxy-eicosa-14-cis-6,8,10-trans-tetraenoic acid much greater than LTD4 = LTC4. GTP suppressed the labeling of the 60-kDa PMNL membrane protein to an extent consistent with the decrease in receptor affinity for LTB4 induced by GTP. The stereospecificity of the affinity cross-linking reaction and the regulation by GTP support the identification of an approximately 60-kDa protein as the binding component of the PMNL receptor for LTB4.  相似文献   

12.
Specific binding of 3H-labeled platelet-activating factor (PAF) to rabbit platelet membranes was found to be regulated by monovalent and divalent cations and GTP. At 0 degrees C, inhibition of [3H]PAF binding by sodium is specific, with an ED50 of 6 mM, while Li+ is 25-fold less effective. On the contrary, K+, Cs+, and Rb+ enhance the binding. The divalent cations, Mg2+, Ca2+, and Mn2+ enhance the specific binding 8-10-fold. From both Scatchard and Klotz analyses, the inhibitory effect of Na+ is apparently due to an increase in the equilibrium dissociation constant (KD) of PAF binding to its receptors. However, the Mg2+-induced enhancement of the PAF specific binding may be attributed to an increased affinity of the receptor and an increased availability of the receptor sites. In the presence of Na+, PAF receptor affinity decreased with increasing temperature with a 100-fold sharp discontinuous decrease in receptor affinity at 24 degrees C. In contrast, the Mg2+-induced increase is independent of temperature suggesting that the Mg2+ regulatory site is different from Na+ regulatory site. [3H]PAF binding is also specifically inhibited by GTP; other nucleotides have little effect. PAF also stimulates hydrolysis of [gamma-32P]GTP with an ED50 of 0.7 nM, whereas 3-O-hexadecyl-2-O-acetyl-sn-glyceryl-1-phosphorylcholine showed no activity even at 10 microM. Moreover, such stimulatory effect of PAF is dependent on Na+ and can be abolished by the PAF-specific receptor antagonist, kadsurenone, but not by an inactive analog, kadsurin B. These results suggest that the PAF receptor may be coupled with the adenylate cyclase system via an inhibitory guanine nucleotide regulatory protein.  相似文献   

13.
The studies reported here involve an exploration of the sites on atrial myocyte membranes with which adenosine interacts to produce its potent physiological effects in atrial muscle. Specific, high affinity binding of the stable adenosine analogs 2-chloro[3H]adenosine (2-ClAdo) and [3H]adenosine 5'-N-ethylcarboxamide (NECA) to atrial sarcolemmal membranes was measured in kinetic and equilibrium studies at 4 degrees C and 35 degrees C. Analysis of the [3H]2-ClAdo binding isotherm indicated the presence of two classes of binding site with equilibrium Kassoc values estimated to be 5.7 X 10(7) M-1 and 2.7 X 10(6) M-1. Displacement of bound [3H]2-ClAdo by adenosine 5'-N-cyclopropylcarboxamide (NCPCA) and by several N6-substituted adenosine analogs confirmed the presence of two classes of binding site. Analysis of the [3H]NECA binding also revealed the presence of two types of binding site for this ligand. The methylxanthines isobutylmethylxanthine and theophylline displaced bound [3H]2-ClAdo whereas adenosine uptake inhibitors and several other purines showed little activity. These atrial membrane binding sites exhibit many of the characteristics of the physiological adenosine receptors studied in intact atria. Furthermore, the [3H]2-ClAdo binding sites were sensitive to treatment with proteolytic enzymes, suggesting that these sites exist on sarcolemmal membrane proteins.  相似文献   

14.
The effect of chronic caffeine treatment on three different binding sites in five brain areas of mice is characterized. The sites studied were the adenosine receptor, using [3H] diethylphenylxanthine, the benzodiazepine receptor, using [3H] diazepam and the adenosine uptake site, using [3H] nitrobenzylthioinosine. Significant increases were only observed in adenosine receptors with the greatest degree of change seen in the cerebellum and brain stem at both 16 and 23 days of caffeine treatment. The lack of significant effects of chronic caffeine on benzodiazepine receptors and adenosine uptake sites indicates that the caffeine effect is specific. The effect of chronic caffeine treatment on the ontogency of adenosine receptors was also studied with the result showing a significantly accelerated development of the receptor in the caffeine treated animals. The adult adenosine receptor levels were 20–30% higher than those observed in control animals. The observed alterations in adenosine receptor number which occur as a consequence of caffeine consumption may underlie some of the behavioral effects of this cortical stimulant as well as provide insights concerning the mechanisms of tolerance to and dependence on caffeine.  相似文献   

15.
Vasopressin (V2) receptors were solubilized from porcine kidney membranes with the detergent egg lysolecithin. Binding of [3H]vasopressin to the solubilized fraction was rapid, specific, and saturable. The agonist dissociation constants observed in membranes and solubilized fractions were 1.7 +/- 0.3 and 2.3 +/- 0.2 nM, respectively. In competition binding experiments, the solubilized fraction exhibited the same pharmacological profile as the membranes. Chemical crosslinking of [125I]vasopressin to the solubilized fraction followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated a 62-kDa band which was specifically labeled with [125I]vasopressin. Vasopressin binding sites from the solubilized fractions were resolved by gel filtration and ultracentrifugation on a sucrose gradient. In addition, agonist high affinity binding to V2 receptors and its sensitivity to guanine nucleotides were preserved even after solubilization in the absence of prebound agonist prior to solubilization. Addition of guanine nucleotides such as GTP gamma S decreased the specific binding of [3H]arginine vasopressin to these solubilized fractions in a dose-dependent manner, suggesting the solubilization of a V2 receptor-G protein complex. [32P]ADP ribosylation of the solubilized fraction by cholera and pertussis toxins revealed specifically labeled proteins with molecular weights of 42,000-43,000 and 39,000-41,000, respectively, on sodium dodecyl sulfate polyacrylamide gels. Furthermore [35S]GTP gamma S binding to these solubilized fractions was enhanced by vasopressin, confirming that a significant proportion of the vasopressin receptors must be closely coupled to G proteins even when these receptors are solubilized in the absence of agonist. These results are in contrast with those reported for beta, alpha 2 adrenergic and D2 dopaminergic receptor systems, but in agreement with D1 dopaminergic and A1 adenosine receptors. The molecular mechanism responsible for this difference remains to be determined.  相似文献   

16.
Binding of thyrotropin-releasing hormone (TRH) to specific receptors on membranes isolated from GH4C1 pituitary cells was inhibited by monovalent cations and guanyl nucleotides. NaCl and LiCl inhibited TRH binding by 70%, with half-maximal inhibition at 30 mM; RbCl and KCl inhibited only 10% at concentrations up to 150 mM. NaCl decreased both the apparent number and the affinity of TRH receptors and increased the rate of dissociation of TRH from both membrane and Triton X-100-solubilized receptors. Guanyl nucleotides inhibited TRH binding up to 80%, with guanyl-5'-yl imidodiphosphate (Gpp(NH)p) approximately GTP much greater than GDP approximately ATP greater than GMP. GTP and Gpp(NH)p exerted half-maximal effects at 0.3 microM and decreased receptor affinity to one-third of control but did not change receptor number. Gpp(NH)p accelerated the dissociation of TRH from membranes but not from solubilized receptors. The effects of NaCl were independent of temperature, while GTP and Gpp(NH)p were much more inhibitory at 22 degrees C (70%) than at 0 degrees C (10%). Inhibition by NaCl could be reversed by washing the membranes, and inhibition by GTP was reversed if membranes were chilled to 0 degrees C. The inhibitory effects of low concentrations of NaCl and Gpp(NH)p were additive. Neither monovalent cations nor GTP prevented the TRH-receptor complex from undergoing transformation from a state with rapid dissociation kinetics to a slower dissociating form. The results suggest that sodium ion regulates TRH binding by interacting with a site on the receptor, while guanyl nucleotides regulate TRH binding indirectly.  相似文献   

17.
To investigate whether guanine nucleotides regulate interconversion of the two-state hepatic glucagon receptor we have utilized kinetic assays of glucagon binding to partially purified rat liver plasma membranes. Dissociation of glucagon at 30 degrees C exhibited biexponential character in either the absence or presence of GTP, indicating that the system previously seen in intact hepatocytes is independent of intracellular modulators. In each case the receptors underwent a time-dependent conversion from a low affinity to a high affinity state. However, GTP decreased the fraction of receptors in the high affinity state. The rank order for stabilizing the low affinity state was Gpp(NH)p greater than GTP greater than GDP much greater than GMP = no nucleotides. Data from competition binding assays with increasing concentrations of GTP allow calculation of equilibrium constants which are 3.32 nM for glucagon and receptor in the absence of GTP, 18.6 nM for glucagon and receptor in the presence of GTP, 1.55 microM for the association of receptor and GTP presumably linked to an N protein, and 8.86 microM for the association of the glucagon-receptor complex and GTP again presumably linked to an N protein, Glucagon binding to receptor is noncooperative in both the absence and presence of GTP, distinguishing this system from the beta-adrenergic system. With GTP, binding to the low affinity state is favored because of the relative affinities reported. Therefore, GTP regulates the activation by slowing the conversion of the receptor from a low affinity to high affinity form.  相似文献   

18.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

19.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

20.
The colony-stimulating factor, CSF-1, selectively stimulates the survival, proliferation, and differentiation of mononuclear phagocytes. The solubilization, assay, and characteristics of the CSF-1 receptor from the J774.2 murine macrophage cell line are described. The recovery of cell-surface receptor in the postnuclear supernatant membrane fraction of hypotonically disrupted cells was 76%. Recovery of the ligand binding activity of the receptor after solubilization of this fraction with 1% Triton X-100 was approximately 150%. The binding of 125I-CSF-1 to intact cells and membrane preparations was consistent with the existence of a single class of high-affinity receptor sites. In contrast, the equilibrium binding of 125I-CSF-1 to the solubilized postnuclear fraction indicated the existence of two distinct classes of binding site (apparent Kds 0.15 nM and 10 nM). A rapid assay was developed for the high-affinity sites, which were shown to be associated with the CSF-1 receptor. The function of the low-affinity sites, which have not been demonstrated on intact cells or cell membranes and which are 13 times more abundant than the high-affinity sites, is unknown. The solubilized high-affinity receptor-CSF-1 complex was stable on storage at 0 degrees C and -70 degrees C but dissociated at 37 degrees C. Dissociation also occurred at 0 degrees C in buffers of low pH (4.0) or high ionic strength (0.7 M NaCl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号