首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human rhinovirus 14 (HRV14) protomer, with or without the antiviral compound WIN 52084s, was simulated using molecular dynamics and rotational symmetry boundary conditions to model the effect of the entire icosahedral capsid. The protein asymmetrical unit, comprising four capsid proteins (VP1, VP2, VP3, and VP4) and two calcium ions, was solvated both on the exterior and the interior to fill the inside of the capsid. The stability of the simulations of this large system (~800 residues and 6,650 water molecules) is comparable to more conventional globular protein simulations. The influence of the antiviral compound on compressibility and positional fluctuations is reported. The compressibility, estimated from the density fluctuations in the region of the binding pocket, was found to be greater with WIN 52084s bound than without the drug, substantiating previous computations on reduced viral systems. An increase in compressibility correlates with an entropically more favorable system. In contrast to the increase in density fluctuations and compressibility, the positional fluctuations decreased dramatically for the external loops of VP1 and the N-terminus of VP3 when WIN 52084s is bound. Most of these VP1 and VP3 loops are found near the fivefold axis, a region whose mobility was not considered in reduced systems, but can be observed with this simulation of the full viral protomer. Altered loop flexibility is consistent with changes in proteolytic sensitivity observed experimentally. Moreover, decreased flexibility in these intraprotomeric loops is noteworthy since the externalization of VP4, part of VP1, and RNA during the uncoating process is thought to involve areas near the fivefold axis. Both the decrease in positional fluctuations at the fivefold axis and the increase in compressibility near the WIN pocket are discussed in relationship to the antiviral activity of stabilizing the virus against uncoating.  相似文献   

2.
Coxsackievirus A9 (CAV9), a member of the Picornaviridae family, uses an RGD motif in the VP1 capsid protein to bind to integrin αvβ6 during cell entry. Here we report that two CAV9 isolates can bind to the heparan sulfate/heparin class of proteoglycans (HSPG). Sequence analysis identified an arginine (R) at position 132 in VP1 in these two isolates, rather than a threonine (T) as seen in the nonbinding strains tested. We introduced a T132R substitution into the HSPG-nonbinding strain Griggs and recovered infectious virus capable of binding to immobilized heparin, unlike the parental Griggs strain. The known CAV9 structure was used to identify the location of VP1 position 132, 5 copies of which were found to cluster around the 5-fold axis of symmetry, presumably producing a region of positive charge which can interact with the negatively charged HSPG. Analysis of several enteroviruses of the same species as CAV9, Human enterovirus B (HEV-B), identified examples from 5 types in which blocking of infection by heparin was coincident with an arginine (or another basic amino acid, lysine) at a position corresponding to 132 in VP1 in CAV9. Together, these data show that membrane-associated HSPG can serve as a (co)receptor for some CAV9 and other HEV-B strains and identify symmetry-related clustering of positive charges as one mechanism by which HSPG binding can be achieved. This is a potentially powerful mechanism by which a single amino acid change could generate novel receptor binding capabilities, underscoring the plasticity of host-cell interactions in enteroviruses.  相似文献   

3.
4.
We have previously described the use of an uncoating inhibitor, WIN 51711, to select drug-resistant mutants of the Sabin strain of poliovirus type 3. Two-thirds of the mutants proved to be dependent on the drug for plaque formation because of extreme thermolability (A. G. Mosser and R. R. Rueckert, J. Virol. 67:1246-1254, 1993). Here we report the responsible mutations; all were traced to single amino acid substitutions. Mutations conferring dependence and thermolability occurred in all four capsid proteins (VP1 to VP4), but all were clustered near residue 53 of VP4 at the inner capsid surface. Amino acid substitutions of the remaining non-drug-dependent mutants were mapped to three distinct loci: (i) on or near the inner capsid surface, at VP4 residue 46 or VP1 residue 129, in the vicinity of the drug dependence substitutions; (ii) at residues 192, 194, and 260 in the lining of the VP1 beta barrel, which is the drug-binding site; and (iii) at VP1 residue 105 on the edge of the canyon surrounding the fivefold axis of symmetry, the putative receptor-binding site. All of the mutations increased the eclipse rate of cell-attached virus. Such mutants help identify parts of the capsid that play a role in viral uncoating functions.  相似文献   

5.
Coxsackievirus A9 (CAV9), a member of the Enterovirus genus of Picornaviridae, is a common human pathogen and is one of a significant number of viruses containing a functional arginine-glycine-aspartic acid (RGD) motif in one of their capsid proteins. Previous studies identified the RGD-recognizing integrin alpha(v)beta(3) as its cellular receptor. However, integrin alpha(v)beta(6) has been shown to be an efficient receptor for another RGD-containing picornavirus, foot-and-mouth disease virus (FMDV). In view of the similarity in sequence context of the RGD motifs in CAV9 and FMDV, we investigated whether alpha(v)beta(6) can also serve as a receptor for CAV9. We found that CAV9 can bind to purified alpha(v)beta(6) and also to SW480 cells transfected with beta(6) cDNA, allowing expression of alpha(v)beta(6) on their surface, but it cannot bind to mock-transfected cells. In addition, a higher yield of CAV9 was obtained in beta(6)-expressing cells than in mock-transfected cells. There was no similar enhancement in infection with an RGD-less CAV9 mutant. We also found beta(6) on the surface of GMK cells, a cell line which CAV9 infects efficiently by an RGD-dependent mechanism. Significantly, this infection is blocked by an antibody to alpha(v)beta(6), while this antibody did not block the low level of infection by the RGD-less mutant. Thus, integrin alpha(v)beta(6) is an RGD-dependent receptor for CAV9 and may be important in natural CAV9 infections.  相似文献   

6.
Drugs such as WIN51711 that inhibit picornavirus replication are thought to block poliovirus infectivity by binding to the capsid and preventing structural transitions required for uncoating. We examined the activity of WIN51711 at temperatures where capsid flexibility is thought to be decreased. Below 37 degrees C, WIN51711 inhibits the binding of wild-type poliovirus to cells but does not affect the binding of a poliovirus mutant which is believed to undergo structural transitions more readily. These results suggest that the poliovirus capsid must undergo structural changes to bind to its cellular receptor.  相似文献   

7.
The initial stage of foot-and-mouth disease virus (FMDV) infection is virus binding to cell surface integrins via the RGD motif in the GH loop of the VP1 capsid protein. As for all ligand/integrin interactions, the initial contact between FMDV and its integrin receptors is cation dependent and hence inhibited by EDTA. We have investigated this binding process with RGD-containing peptides derived from the VP1 capsid protein of FMDV and discovered that, upon binding, some of these peptides form highly stable, EDTA-resistant associations with integrin αvβ6. Peptides containing specific substitutions show that this stable binding is dependent on a helical structure immediately C terminal to the RGD and, specifically, two leucine residues at positions RGD +1 and RGD +4. These observations have a biological consequence, as we show further that stable, EDTA-resistant binding to αvβ6 is a property also exhibited by FMDV particles. Thus, the integrin-binding loop of FMDV appears to have evolved to form very stable complexes with the principal receptor of FMDV, integrin αvβ6. An ability to induce such stable complexes with its cellular receptor is likely to contribute significantly to the high infectiousness of FMDV.  相似文献   

8.
Recent sequence analysis revealed that the human pathogen echovirus 22 (EV22) is genetically distant from all the other picornaviruses studied to date (T. Hyypiä, C. Horsnell, M. Maaronen, M. Khan, N. Kalkkinen, P. Auvinen, L. Kinnunen, and G. Stanway, Proc. Natl. Acad. Sci. USA 89:8847-8851, 1992). We have further characterized the biological properties of the virus and show here that the virion has properties similar to those of other picornaviruses. However, the protein composition is unique, in that most copies of one of the three major capsid proteins, VP0, do not undergo the further processing to VP2 and VP4 observed during the maturation of the virus in previously studied picornaviruses. Alignment of the capsid protein sequences with those of other picornaviruses revealed, furthermore, that the VP3 polypeptide contains an apparent insertion of approximately 25 amino acids at its amino terminus. An arginine-glycine-aspartic acid (RGD) motif is found in VP1, and by using synthetic peptides, it was shown that this sequence plays a role in cell surface receptor recognition. Finally, EV23 was shown to share remarkable identity with EV22 in certain parts of the genome and also belongs to this previously unrecognized picornavirus group.  相似文献   

9.
The amino acid sequence Arg-Gly-Asp (RGD) is highly conserved on the VP1 proteins of different serotypes and subtypes of foot-and-mouth disease virus (FMDV) and is essential for cell attachment. This sequence is also found in certain extracellular matrix proteins that bind to a family of cell surface receptors called integrins. Within the Picornaviridae family, enterovirus coxsackievirus A9 also has an RGD motif on its VP1 capsid protein and has recently been shown to utilize the vitronectin receptor integrin alpha V beta 3 as a receptor on monkey kidney cells. Competition binding experiments between type A12 FMDV and coxsackievirus A9 using BHK-21 and LLC-MK2 cells revealed shared receptor specificity between these two viruses. Polyclonal anti-serum to the vitronectin receptor and a monoclonal antibody to the alpha V subunit inhibited both FMDV binding and plaque formation, while a monoclonal antibody to the beta 3 subunit inhibited virus binding. In contrast, antibodies to the fibronectin receptor (alpha 5 beta 1) or to the integrin (alpha V beta 5) had no effect on either binding or plaque formation. These data demonstrate that the alpha V beta 3 vitronectin receptor can function as a receptor for FMDV.  相似文献   

10.
We have studied coxsackievirus A9 (CAV9) mutants that each have a single amino acid substitution in the conserved 29-PALTAVETGHT-39 motif of VP1 and a reduced capacity to produce infectious progeny virus. After uncoating, all steps in the infection cycle occurred according to the same kinetics as and similar efficiency to the wild-type virus. However, the particle/infectious unit ratio in the progeny was significantly increased. The differences were apparently due to altered stability of the capsid: there were mutant viruses with enhanced or hindered uncoating, and both of these characteristics were found to reduce fitness under standard passaging conditions. At 32 degrees C the instable mutants had an advantage, while the wild-type and the most stable mutant grew poorly. When comparing the newly published CAV9 structure and the other enterovirus structures, we found that the PALTAVETGHT motif is always in exactly the same position, in a cavity formed by the 3 other capsid proteins, with the C terminus of VP4 between this motif and the RNA. In the 7 enterovirus structures determined to date, the most conserved residues of the studied motif have identical contacts to neighboring residues of VP2, VP3, and VP4. We conclude that (i) the mutations affect the uncoating step necessary for infection, resulting in an untimely or hindered externalization of the VP1 N terminus together with the VP4, and (ii) the reason for the studied motif being evolutionarily conserved is its role in maintaining an optimal balance between the protective stability and the functional flexibility of the capsid.  相似文献   

11.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

12.
Human rhinovirus 14 complexed with antiviral compound R 61837.   总被引:7,自引:0,他引:7  
The binding of the antirhinoviral agent R 61837 to human rhinovirus 14 has been examined by X-ray crystallographic methods. The compound R 61837 binds in the same pocket (underneath the canyon floor) as the "WIN" antirhinoviral agents. It does not penetrate as far into the pocket but causes similar conformational changes in the virus capsid. The movement of residues 1217 to 1221 of viral protein 1 (in the "FMDV loop") is more pronounced for R 61837 than for WIN compounds. Although both R 61837 and WIN antiviral agents partially fill the same hydrophobic pocket, atomic binding interactions differ, showing that considerable diversity in the nature of antiviral agents is possible.  相似文献   

13.
Cell surface molecules that can act as virus receptors may exert an important selective pressure on RNA viral quasispecies. Large population passages of foot-and-mouth disease virus (FMDV) in cell culture select for mutant viruses that render dispensable a highly conserved Arg-Gly-Asp (RGD) motif responsible for integrin receptor recognition. Here, we provide evidence that viability of recombinant FMDVs including a Asp-143-->Gly change at the RGD motif was conditioned by a number of capsid substitutions selected upon FMDV evolution in cell culture. Multiply passaged FMDVs acquired the ability to infect human K-562 cells, which do not express integrin alpha(v)beta(3). In contrast to previously described cell culture-adapted FMDVs, the RGD-independent infection did not require binding to the surface glycosaminoglycan heparan sulfate (HS). Viruses which do not bind HS and lack the RGD integrin-binding motif replicate efficiently in BHK-21 cells. Interestingly, FMDV mutants selected from the quasispecies for the inability to bind heparin regained sensitivity to inhibition by a synthetic peptide that represents the G-H loop of VP1. Thus, a single amino acid replacement leading to loss of HS recognition can shift preferential receptor usage of FMDV from HS to integrin. These results indicate at least three different mechanisms for cell recognition by FMDV and suggest a potential for this virus to use multiple, alternative receptors for entry even into the same cell type.  相似文献   

14.
Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.  相似文献   

15.
The recently reported nucleotide sequence of coxsackievirus A9 (CAV-9) showed that unlike other enteroviruses, CAV-9 has an insertion of about 17 amino acids at the C-terminal end of VP1 (K. H. Chang, P. Auvinen, T. Hyypi?, and G. Stanway, J. Gen. Virol. 70:3269-3280, 1989). This sequence includes the RGD (arginine-glycine-aspartic acid) motif which is known to be important in certain protein-protein interactions. We studied the inhibitory effect of RGD-containing peptides in the attachment of CAV-9 to African green monkey kidney cells. A peptide corresponding to the RRGDM sequence derived from the inserted segment of CAV-9 was found to block virus attachment effectively, and the inhibition was dose dependent. Substitution of glutamic acid for the homologous aspartic acid completely abolished the inhibitory effect, indicating great specificity of the action. During replication in the gut, all enteroviruses are exposed to host proteolytic enzymes. Exposure of CAV-9 to purified trypsin or human intestinal fluid resulted in selective cleavage of the VP1 capsid protein. Intact and trypsin-cleaved VP1 proteins gave identical N-terminal sequences, indicating that cleavage of VP1 takes place near the C terminus. Attachment of proteolytically cleaved infectious CAV-9 to green monkey kidney cells was not prevented by RGD-containing peptides, indicating that cleaved CAV-9 is able to bypass RGD-dependent entry. The altered receptor specificity of proteolytically cleaved viruses may have important consequences in the pathogenesis of enteric infections.  相似文献   

16.
【目的】口蹄疫病毒(Foot-and-Mouth Disease Virus,FMDV)通过结构蛋白VP1 G-H环上高度保守的精氨酸-甘氨酸-天门冬氨酸(Arg-Gly-Asp,RGD)基序与整联蛋白结合起始病毒的感染,但FMDV是RNA病毒,在环境条件变化时,FMDV能够以非RGD的途径起始病毒的感染。为了研究FMDV Asia1/JS/China/05田间舌皮毒经两种不同的途径短期传代后细胞受体结合基序RGD的变异。【方法】采用RT-PCR方法扩增FMDV Asia1/JS/China/05田间毒、田间毒的乳鼠适应毒第四代(MF4)和接种田间毒的牛同居感染的猪水泡病料适应细胞的第八代毒(PBF8)结构蛋白VP1基因,并对不同病毒VP1基因的PCR产物测序和cDNA文库测序。【结果】以含RGD受体结合基序为优势的田间毒在乳鼠上短期传代后出现了含精氨酸-丝氨酸-天门冬氨酸(Arg-Ser-Asp,RSD)和RGD受体结合基序的混合种群,而同居感染后的细胞传代病毒种群则以含精氨酸-天门冬氨酸-天门冬氨酸(Arg-Asp-Asp,RDD)受体结合基序为优势种群。【结论】发现了含RGD受体结合位点为优势的FMDV种群,经不同的宿主短期传代后产了含RSD或RDD受体结合基序的优势种群,该发现不仅增加了保守基序RGD发生替换的FMDV变异株的数量,而且为FMDV的细胞识别和宿主嗜性的改变等进一步研究奠定了物质基础。  相似文献   

17.
We present sequence data from two genomic regions of foot-and-mouth disease virus (FMDV) subjected to several experimental passage regimens. Maximum-likelihood estimates of the nonsynonymous-to-synonymous rate ratio parameter (d(N)/d(S)) suggested the action of positive selection on some antigenic sites of the FMDV capsid during some experimental passages. These antigenic sites showed an accumulation of convergent amino acid replacements during massive serial cytolytic passages and also in persistent infections of FMDV in cell culture. This accumulation was most significant at the antigenic site A (the G-H loop of capsid VP1), which includes an Arg-Gly-Asp (RGD) cellular recognition motif. Our analyses also identified a subregion of VP3, part of the fivefold axis of FMDV particles, that also appeared to be subjected to positive selection of amino acid replacements. From these results, we can conclude that under the restrictive conditions imposed either by the presence of the monoclonal antibodies, by the persistent infections, or by the competition processes established between different variants of the viral population, amino acid replacement in some capsid-coding regions can be positively selected toward an increase of those mutants with a higher capability to infect the cell.  相似文献   

18.
A variety of chemically different compounds inhibit the replication of several serotypes of rhinoviruses (common-cold viruses). We noticed that one of these antiviral compounds, WIN 51711, had an antiviral spectrum clearly distinctive from a consensus spectrum or other capsid-binding compounds, although all of them were shown to share the same binding site. A systematic evaluation of all known rhinovirus capsid-binding compounds against all serotyped rhinoviruses was therefore initiated. Multivariate analysis of the results revealed the existence of two groups of rhinoviruses, which we will call antiviral groups A and B. The differential sensitivity of members of these groups to antiviral compounds suggests the existence of a dimorphic binding site. The antiviral groups turned out to be a reflection of a divergence of rhinovirus serotypes on a much broader level. Similarities in antiviral spectra were highly correlated with sequence similarities, not only of amino acids lining the antiviral compound-binding-site, but also of amino acids of the whole VP1 protein. Furthermore, analysis of epidemiological data indicated that group B rhinoviruses produced more than twice as many clinical infections per serotype than group A rhinoviruses did. Rhinoviruses belonging to the minor receptor group were without exception all computed to lie in the same region of antiviral group B.  相似文献   

19.
An RGD (arginine-glycine-aspartic acid) motif in coxsackievirus A9 has been implicated in internalization through an interaction with the integrin alpha v beta 3. We have produced a number of virus mutants, lacking the motif, which have a small-plaque phenotype in LLC-Mk2 and A-Vero cells and are phenotypically normal in RD cells. Substitution of flanking amino acids also affected plaque size. The results suggest that interaction between the RGD motif and alpha v beta 3 is not critical for virus viability in the cell lines tested and therefore that alternative regions of the CAV-9 capsid are involved in internalization.  相似文献   

20.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号