首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long chain unsaturated fatty acids stimulate phosphorylase "a" activity in liver cells. Similar degree of activation was achieved by increasing cellular Ca2+ content or by treatment with agents other than oleate, like 1,2-diolein or phorbol esters, sharing in common their ability to activate protein kinase C. In Ca2+-loaded liver cells only phenylephrine was capable of inducing a further stimulation of phosphorylase "a" activity. It is concluded that: 1) The state of activation of protein kinase C may play a role in the hormonal control of liver glycogen metabolism; 2) alpha 1-agonist-mediated activation of phosphorylase "a" can occur by a mechanism which is not related to a Ca2+-dependent activation of protein kinase C.  相似文献   

2.
Incubation of hepatocytes with the protein kinase C activator and tumour promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and concentration-dependent inactivation of glycogen synthase, but no change in phosphorylase. The same rate and extent of inactivation occurred in hepatocytes depleted of Ca2+ by treatment with the Ca2+ chelator EGTA. When hepatocytes were treated with the Ca2+-mobilizing hormone vasopressin (10 nM), the rate of glycogen synthase inactivation was similar to that observed with PMA (1 microM). Depletion of intracellular Ca2+ stores with EGTA abolished the ability of vasopressin to mobilize Ca2+ and activate phosphorylase without abolishing its ability to inactivate glycogen synthase and increase 1,2-diacylglycerol (DAG), the endogenous activator of protein kinase C. Protein kinase C, either in membranes or after partial purification, was shown to be activated in vitro by PMA in the presence of very low concentrations of Ca2+. Exogenous phospholipase C from Clostridium perfringens, at low concentrations, inactivated glycogen synthase and increased DAG without affecting cell Ca2+ or phosphorylase. It is proposed that the inactivation of glycogen synthase elicited by the Ca2+-mobilizing hormones is due, at least in part, to generation of DAG and activation of protein kinase C.  相似文献   

3.
Phenylephrine, vasopressin and the bivalent cation ionophore A23187 mobilized Ca2+ normally, but failed to activate phosphorylase, in hepatocytes from gsd/gsd rats with a deficiency of liver phosphorylase b kinase. These data provide strong evidence that phosphorylase b kinase is the site of action of the Ca2+ mobilized intracellularly during alpha 1-adrenergic activation of phosphorylase in liver cells.  相似文献   

4.
Inositol 1,4,5-trisphosphate (IP3) binding to, and Ca2+ uptake and release by plasma membrane- and endoplasmic reticulum-enriched fractions of rat liver were measured after continuous Escherichia coli endotoxin (ET) administration in vivo. IP3 binding to both fractions was significantly reduced by ET treatment. This was associated with decreased Ca2+ uptake and impaired IP3-dependent Ca2+ release. A decrease of 5'-nucleotidase specific activity of plasma membrane-enriched fraction was also observed in ET treated rats. The results suggest that previously observed impairments in the ability of hepatocytes to mobilize Ca2+, to activate glycogen phosphorylase and to respond--when saponin permeabilized--by Ca2+ release upon IP3 addition during chronic endotoxemia are due to alterations in both IP3 binding to the subcellular fractions that are imputed to be targets of IP3, and a decrease in the size of IP3-sensitive pool of releasable Ca2+.  相似文献   

5.
The role of Ca2+ ions in alpha-adrenergic activation of hepatic phosphorylase was studied using isolated rat liver parenchymal cells. The activation of glucose release and phosphorylase by the alpha-adrenergic agonist phenylephrine was impaired in cells in which calcium was depleted by ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) treatment and restored by calcium addition, whereas the effects of a glycogenolytically equivalent concentration of glucagon on these processes were unaffected. EGTA treatment also reduced basal glucose release and phosphorylase alpha activity, but did not alter the level of cAMP or the protein kinase activity ratio (-cAMP/+cAMP) or impair viability as determined by trypan blue exclusion, ATP levels, or gluconeogenic rates. The effect of EGTA on basal phosphorylase and glucose output was also rapidly reversed by Ca2+, but not by other ions. Phenylephrine potentiated the ability of low concentrations of calcium to reactivate phosphorylase in EGTA-treated cells. The divalent cation inophore A23187 rapidly increased phosphorylase alpha and glucose output without altering the cAMP level, the protein kinase activity ratio, and the levels of ATP, ADP, or AMP, The effects of the ionophore were abolished in EGTA-treated cells and restored by calcium addition. Phenylephrine rapidly stimulated 45Ca uptake and exchange in hepatocytes, but did not affect the cell content of 45Ca at late time points. A glycogenolytically equivalent concentration of glucagon did not affect these processes, whereas higher concentrations were as effective as phenylephrine. The effect of phenylephrine on 45Ca uptake was blocked by the alpha-adrenergic antagonist phenoxybenzamine, was unaffected by the beta blocker propranolol, and was not mimicked by isoproterenol. The following conclusions are drawn: (a) alpha-adrenergic activation of phosphorylase and glucose release in hepatocytes is more dependent on calcium than is glucagon activation of these processes; (b) variations in liver cell calcium can regulate phosphorylase alpha levels and glycogenolysis; (c) calcium fluxes across the plasma membrane are stimulated more by phenylephrine than by a glycogenolytically equivalent concentration of glucagon. It is proposed that alpha-adrenergic agonists activate phosphorylase by increasing the cytosolic concentration of Ca2+ ions, thus stimulating phosphorylase kinase.  相似文献   

6.
Vasopressin and alpha-adrenergic agonists are known to be potent cyclic AMP-independent Ca2+-dependent activators of liver glycogen phosphorylase. When hepatocytes are pre-incubated with increasing concentrations of vasopressin or of the alpha-agonist phenylephrine, they become progressively unresponsive to a second addition of the respective agonist. The relative abilities of six vasopressin analogues and of five alpha-agonists to activate glycogen phosphorylase and to cause subsequent desensitization are highly correlated, indicating that the same vasopressin and alpha-adrenergic receptors are involved in both responses. About 5-times-higher peptide concentrations are needed to desensitize the cells than to activate their glycogen phosphorylase, whereas the concentrations of alpha-agonists required for the desensitization are only twice those needed for the activation of phosphorylase. The desensitization is not mediated by a perturbation in the agonist-receptor interaction. It is clearly heterologous, i.e. it is not agonist-specific, and must therefore involve a mechanism common to both series of agonists. The evidence for a role of Ca2+ movements or phosphatidylinositol turnover is briefly discussed.  相似文献   

7.
Perfusion of the isolated rat heart with Ca2+ concentrations exceeding 3 mM activated phosphofructokinase and phosphorylase, and decreased the concentration of cyclic AMP. Half-maximal activation of phosphofructokinase occurred at 5 mM-CaCl2; significant activation of phosphorylase did not occur until the concentration of CaCl2 exceeded 12 mM. The time course for the activation of phosphofructokinase at 12 mM-CaCl2 indicated that maximal activation occurred within 2 min; when the perfusion-medium Ca2+ concentration was re-adjusted to 3 mM, the phosphofructokinase activity returned to pre-activation values within 30 s. The addition of Ca2+ to extracts of heart did not activate phosphofructokinase. The activation of phosphofructokinase by sub-maximal doses of adrenaline and Ca2+ were not additive. The activation of phosphofructokinase by 1 microM-adrenaline + 10 microM-propranolol and by 1 microM-isoprenaline was inhibited by high concentrations of K+ (22-56 mM). The activation of phosphofructokinase by 1 microM-adrenaline + 10 microM-propranolol, 12 mM-CaCl2 and by 1 microM-isoprenaline was blocked by the slow Ca2+-channel blocker nifedipine. These findings suggest that both the beta- and alpha-adrenergic mechanisms for the activation of rat heart phosphofructokinase involve an increase in the myoplasmic Ca2+ concentration. This increase may result from an inhibition of Ca2+ efflux or a stimulation of Ca2+ influx.  相似文献   

8.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an alpha-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium. (d) Glucagon, cyclic AMP and three cyclic AMP-dependent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation. We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

9.
1. In hepatocytes, epidermal growth factor (EFG) (a) increased the rate of 45Ca2+ exchange in cells incubated at 1.3 mM extracellular Ca2+, (b) increased the activity of glycogen phosphorylase a and the intracellular free Ca2+ concentration (measured with quin2) in a process dependent on the concentration of extracellular Ca2+, and (c) enhanced the increase in glycogen phosphorylase activity which follows the addition of Ca2+ to cells previously incubated in the absence of Ca2+. It is concluded that EGF stimulates plasma-membrane Ca2+ inflow. 2. The effects of the combination of EGF and vasopressin on the rate of 45Ca2+ exchange and on the rate of increase in glycogen phosphorylase activity were the same as those of vasopressin alone. 3. The amount of 45Ca2+ released by EGF from internal stores was about 30% of that released by vasopressin. No detectable increase in [3H]inositol mono-, bis- or tris-phosphate was observed after the addition of EGF to cells labelled with myo-[3H]inositol. 4. In hepatocytes isolated from rats treated with pertussis toxin, the effects of EGF and vasopressin on phosphorylase activity (measured at 1.3 mM-Ca2+) and on the rate of Ca2+ inflow (measured with quin2) were markedly decreased compared with those in normal cells. 5. Treatment with pertussis toxin did not impair the ability of vasopressin to release Ca2+ from internal stores, but decreased vasopressin-stimulated [3H]inositol polyphosphate formation by 50%. 6. It is concluded that the mechanism(s) by which vasopressin and EGF stimulate plasma-membrane Ca2+-inflow transporters in hepatocytes involves a GTP-binding regulatory protein sensitive to pertussis toxin, and does not require an increase in the concentration of inositol trisphosphate comparable with that which induces the release of Ca2+ from the endoplasmic reticulum.  相似文献   

10.
Phosphorylase kinase from rabbit skeletal muscle has been found to have an intrinsic ATPase activity that occurs at a rate approximately 0.2% of that of its phosphorylase conversion activity and about three times that of its autophosphorylation activity. The characteristics of this ATPase activity were in all aspects tested essentially the same as the kinase's phosphorylase conversion activity. The ATPase requires Mg2+ and is dramatically stimulated by Ca2+ ions. At neutral pH there is a pronounced lag in the rate of product formation that is not present at alkaline pH, a condition that greatly stimulates both the phosphorylase conversion and ATPase activities. ATP is preferentially hydrolyzed over GTP and the Km for MgATP determined in the ATPase assay is 0.14 mM. ADP, an allosteric activator of phosphorylase conversion, also stimulates the ATPase activity, whereas beta-glycerophosphate, an inhibitor of phosphorylase conversion, is an inhibitor of the ATPase activity. Phosphorylation or partial proteolysis of the kinase, which are known to activate phosphorylase conversion, also activate the ATPase activity. Because the phosphorylase conversion and ATPase activities are regulated in parallel, we conclude that activation of the two catalytic activities must share a common underlying basis, namely an enhanced phosphotransferase activity that is independent of the phosphoryl acceptor.  相似文献   

11.
The influence of extracellular Ca2+ on hormone-mediated increases of cytosolic free Ca2+ [( Ca2+]i) and phosphorylase activity was studied in isolated hepatocytes. In the presence of 1.3 mM extracellular Ca2+, the stimulation of phosphorylase activity produced by vasopressin or phenylephrine was maintained for 20-30 min. In contrast, the change in [Ca2+]i under these conditions was more transient and declined within 3-4 min to steady state values only 70 +/- 8 nM above the resting [Ca2+]i. Removal of the hormone from its receptor with specific antagonists caused a decline in [Ca2+]i back to the original resting values. Subsequent addition of a second hormone elicited a further Ca2+ transient. If the antagonist was omitted, the second hormone addition did not increase [Ca2+]i indicating that the labile intracellular Ca2+ pool remains depleted during receptor occupation. When extracellular Ca2+ was omitted, both the changes of [Ca2+]i and phosphorylase a caused by vasopressin were transient and returned exactly to resting values within 3-4 min. The subsequent readdition of Ca2+ to these cells produced a further increase of [Ca2+]i and phosphorylase activity which was larger than the changes observed upon Ca2+ addition to untreated cells. This reactivation of phosphorylase showed saturation kinetics with respect to extracellular [Ca2+], was maximally stimulated within 1 min of vasopressin addition and was inhibited by high concentration of diltiazem. We conclude that entry of extracellular Ca2+ into the cell is required in order to obtain a sustained hormonal stimulation of phosphorylase activity and is responsible for the maintenance of a small steady state elevation of [Ca2+]i.  相似文献   

12.
Treatment of isolated hepatocytes with NaF produced a concentration-dependent activation of phosphorylase, inactivation of glycogen synthase, efflux of Ca2+, rise in cytosolic free Ca2+ ([Ca2+]i), increase in myo-inositol-1,4,5,-P3 levels, decrease in phosphatidylinositol-4,5-P2 levels, and increase in 1,2-diacylglycerol levels. These changes were evident within 1 min and maximum at 2-5 min. Maximum effects on Ca2+ efflux, [Ca2+]i, glycogen synthase, and phosphorylase were observed with 15 mM NaF, whereas myo-inositol-1,4,5-P3 and 1,2-diacylglycerol levels were maximally stimulated by 50 mM NaF. The levels of intracellular cAMP were decreased by NaF (up to 10 mM) in the absence or presence of glucagon (0.1-1 nM) or forskolin (2 microM). The effects of low doses of NaF (2-15 mM) to inhibit basal or glucagon-stimulated cAMP accumulation, mobilize Ca2+, activate phosphorylase, and inactivate glycogen synthase were all potentiated by AlCl3. This potentiation was abolished by the Al3+ chelator deferoxamine. These results illustrate that AlF4- can mimic the effects of Ca2+-mobilizing hormones in hepatocytes and suggest that the coupling of the receptors for these hormones to the hydrolysis of phosphatidylinositol-4,5-P2 to myo-inositol 1,4,5-P3 is through a guanine nucleotide-binding regulatory protein. This is because AlF4- is known to modulate the activity of other guanine nucleotide regulatory proteins (Ni, Ns, and transducin).  相似文献   

13.
In the present study, we investigated the possible role of external Ca2+ in the rise of the cytosolic Ca+ concentration induced by the monohydroxy bile acid taurolithocholate in isolated rat liver cells. The results showed that: (a) the bile acid promotes the same dose-dependent increase in the cytosolic Ca+ concentration (half-maximal effect at 23 microM) in hepatocytes incubated in the presence of 1.2 mM Ca2+ or 6 microM Ca2+; (b) taurolithocholate is able to activate the Ca2(+)-dependent glycogen phosphorylase a by 6.3-fold and 6.0-fold in high and low Ca2+ media, respectively; (c) [14C]taurolithocholate influx is not affected by external Ca2+, and 45Ca2+ influx is not altered by taurolithocholate. These results establish that the effects of taurolithocholate on cell Ca2+ do not require extracellular Ca2+ and are consistent with the view that monohydroxy bile acids primarily release Ca2+ from the endoplasmic reticulum in the liver.  相似文献   

14.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

15.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

16.
The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

18.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an α-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium (d) Glucagon, cyclic AMP and three cyclic AMP-independent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation.We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

19.
The role of the cytoskeleton in regulation of purinergic agonist- and endoplasmic Ca(2+)-ATPase inhibitors-induced Ca2+ signals in rat peritoneal macrophages was investigated. It has been shown that in cells pretreated with agents that disrupt microtubules (vinblastine, colchicine, colcemid) or actin microfilaments (cytochalasins, phalloidin), the ability of thapsigargin or cyclopiazonic acid to empty Ca2+ stores and activate store-dependent Ca2+ influx was significantly attenuated. On the contrary, microfilaments and microtubule disrupters did not affect ATP- or UTP-induced Ca2+ mobilization, indicating that release of Ca2+ from intracellular stores through the inositol phosphate pathway was intact. The results suggested that an intact cytoskeleton is required for capacitative Ca2+ entry but not for agonist-induced Ca2+ mobilization.  相似文献   

20.
The relation between Ca2+ efflux, Ca2+ mobilization from mitochondria and glycogenolysis was studied in perfused euthyroid and hypothyroid rat livers stimulated by Ca2+-mobilizing hormones. Ca2+ efflux, induced by noradrenaline (1 microM) in the absence or presence of DL-propranolol (10 microM) from livers perfused with medium containing a low concentration of Ca2+ (approx. 24 microM), was decreased by more than 50% in hypothyroidism. This correlated with an equal decrease of the fractional mobilization of mitochondrial Ca2+, which could account for 65% of the difference between the net amounts of Ca2+ expelled from the euthyroid and hypothyroid livers. With vasopressin (10 nM) similar results were found, suggesting that hypothyroidism has a general effect on mobilization of internal Ca2+. In normal Ca2+ medium (1300 microM), however, the effect of vasopressin on net Ca2+ fluxes and phosphorylase activation was not impaired in hypothyroidism, indicating that Ca2+ mobilization from the mitochondria in this case plays a minor role in phosphorylase activation. The alpha 1-adrenergic responses of Ca2+ efflux, phosphorylase activation and glucose output, glucose-6-phosphatase activity and oxygen consumption in hypothyroid rat liver were completely restored by in vivo T3 injections (0.5 micrograms per 100 g body weight, daily during 3 days). Perfusion with T3 (100 pM) during 19 min did not influence hypothyroid rat liver oxygen consumption and alpha 1-receptor-mediated Ca2+ efflux. However, this in vitro T3 treatment showed a completely recovered alpha 1-adrenergic response of phosphorylase and a partly restored glucose-6-phosphatase activity and glucose output. The results indicate that thyroid hormones may control alpha 1-adrenergic stimulation of glycogenolysis by at least two mechanisms, i.e., a long-term action on Ca2+ mobilization, and a short-term action on separate stages of the glycogenolytic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号