首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Water permeability of cuticular membranes (CM) from the inner bulb scales of Allium cepa has been investigated. CM have a thickness ranging from 0.6 to 1.3 μm. They are composed of a thin (120–200 nm) lamellated cuticle proper and a thicker (300–900 nm) cuticular layer. Permeability coefficients for diffusion of water across these thin membranes are very low (4 × lO−10ms−10). There was no difference in permeability of CM from successive scales of the same onion. Extraction of soluble cuticular lipids (SCL) with chloroform increased permeability by a factor of 1350 to 2050. Preliminary data indicate that only 1 μg cm−10 of SCL are removed by this treatment, hydrocarbons being the main (75%) consistuent. Permeability coefficients of cuticular transpiration were little affected by relative humidity, showing that transport is limited by a hydrophobic barrier that lacks dipoles. However, following extraction, permeability of the membranes depended strongly on humidity due to the presence of polar functional groups in the polymer matrix. Soluble cuticular lipids undergo a phase transition around 47°C. Temperatures higher than that irreversibly increased water permeability.  相似文献   

2.
Klaus J. Lendzian 《Planta》1982,155(4):310-315
Cuticles from the adaxial surface of Citrus aurantium L. leaves and from the pericarp of Lycopersicon esculentum L. and Capsicum annuum L. were isolated enzymatically and their oxygen permeability was determined. Isolated cuticles were mounted between a gaseous and an aqueous compartment with the physiological outer side of the membrane facing the gaseous compartment. Permeability for oxygen was characterized by permeability (P) and diffusion (D) coefficients. P and D were independent of the driving force (gradient of oxygen concentration) across the cuticle, thus, Henry's law was obeyed. P values for the diffusion of oxygen varied between 3·10-7 (Citrus), 1.4·10-6 (Capsicum), and 1.1·10-6 (Lycopersicon) m·s-1. Extraction of soluble lipids from the cuticles increased the permeability. By treating the cutin matrix and the soluble lipids as resistances in series, it could be demonstrated that the soluble lipids were the main resistance for oxygen permeability in Citrus cuticles. However, in Lycopersicon and Capsicum, both the cutin matrix and the soluble lipids determined the total resistance. P values were not affected by either the proton concentration (pH 3–9) or the cations (Na+, Ca2+) present at the morphological inner side of the cuticles. It is concluded that the water content of cuticles does not affect the permeability properties for oxygen. Partition coefficients indicated a high solubility of oxygen in the cuticle of Citrus. The data suggest a solubility process in the cuticle of Citrus with respect to oxygen permeation.Abbreviations CM cuticular membrane - MX cutin polymer matrix - SCL soluble cuticular lipids  相似文献   

3.
J. Schönherr  K. Eckl  H. Gruler 《Planta》1979,147(1):21-26
The effect of temperature on water permeability of plant cuticles (astomatous Citrus leaf cuticles) has been investigated. The Arrhenius plot (logarithm of the permeability coefficient vs. 1/temperature) has two linear portions that intersect at 44° C. Evidence is presented to show that this intersection represents the solid/liquid phase transition of cuticular lipids. As the Arrhenius plot has only one phase transition in the temperature range of 5 to 80° C, it appears that all soluble cuticular lipids in the cuticle are present as a homogeneous mixture rather than as individual layers differing in composition. This view is supported by electron spin resonance evidence showing homogenous distribution of spin label fatty acids. The original distribution of soluble cuticular lipids is irreversibly altered by heating cuticular membranes above the transition temperature. This is accompanied by an irreversible increase in water peremeability, demonstrating the importance of the structure of cuticular lipids with regard to cuticular permeability.Abbreviations CM cuticular membranes - MX polymer matrix - SCL soluble cuticular lipids - MES morpholinoethane sulphonic acid - J flux - ESR electron spin resonance - THO tritiated water  相似文献   

4.
J. Schönherr 《Planta》1976,131(2):159-164
Summary The water permeability of astomatous cuticular membranes isolated from Citrus aurantium L. leaves, pear (Pyrus communis L.) leaves and onion (Allium cepa L.) bulb scales was determined before and after extraction of cuticular waxes with lipid solvents. In pear, the permeability coefficients for diffusion of tritiated water across cuticular membranes (CM) prior to extraction [P d(CM)] decreased by a factor of four during leaf expansion. In all three species investigated P d(CM) values of cuticular membranes from fully expanded leaves varied between 1 to 2×10-7 cm-3 s-1·P d(CM) values were not affected by pH. Extraction of cuticular waxes from the membranes increased their water permeability by a factor of 300 to 500. Permeability coefficients for diffusion of THO across the cutin matrix (MX) after extraction [P d(MX)] increased with increasing pH. P dvalues were not inversely proportional to the thickness of cuticular membranes. By treating the cutin matrix and cuticular waxes as two resistances acting in series it was shown that the water permeability of cuticles is completely determined by the waxes. The lack of the P d(CM) values to respond to pH appeared to be due to structural effects of waxes in the cutin matrix. Cuticular membranes from the submerse leaves of the aquatic plant Potamogeton lucens L. were three orders of magnitude more permeable to water than the cuticular membranes of the terrestrial species investigated.Abbreviations CM cuticular membrane - MX cutin matrix - WAX waxes This study was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

5.
Beyer M  Lau S  Knoche M 《Planta》2005,220(3):474-485
Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of 3H2O in the absence of osmotica. The energy of activation for self-diffusion of water across ES or CM was higher than for osmotic water uptake and decreased with increasing stomatal density. The data indicate that viscous flow along an aqueous continuum across the sweet cherry fruit exocarp and across the astomatous CM of selected species accounted for the higher permeability during water uptake as compared to self-diffusion or transpiration.  相似文献   

6.
K. Haas  J. Schönherr 《Planta》1979,146(4):399-403
Water permeability and composition of soluble cuticular lipids of isolated cuticular membranes from leaves of Citrus aurantium L. were investigated for 3 successive years. The average water permeability coefficient determined using 169 cuticular membranes was 1.09·10–7 cm s–1 with a standard deviation of 0.78·10–7 cm s–1. There were no significant differences in water permeability between years. Cuticular membranes are characterized by a great variability in water permeability both within and between years. Both water permeability of individual membranes and variability between membranes are shown to be determined by soluble cuticular lipids contained within the cuticular membranes. The soluble cuticular lipids of Citrus leaves are composed of fatty acids, primary alcohols, esters, and hydrocarbons. They occur in amounts of 9.84 g cm–2, which represents approx. 3% of the total mass of isolated cuticular membranes. The specific weight of cuticular membranes (365.4 g cm–1) and total amount of soluble cuticular lipids did not vary significantly between years. Significant differences were observed for the amounts and composition of the constituent classes of lipids. Six homologues comprise 86% of the fatty acids (C16; C18; C19; C21; C24; C26), 83% of the primary alcohols (C24; C26; C28; C30; C32; C34) and 88% of the esters (C36; C38; C40; C41; C42; C44). Eleven major homologues amount only to 62% of the total hydrocarbons (C16; C17; C18; C20; C26; C27; C29; C30; C31; C32; C33). Variability in the composition of soluble cuticular lipids between years was much smaller than variability of water permeability and, therefore, no relation between composition of soluble cuticular lipids and water permeability could be found. It is suggested that this may be due to the fact that the lipid composition observed represents the averages of 20 to 30 membranes analyzed so that differences between individual membranes may have been leveled out.Abbreviations CM cuticular membranes - MX polymer matrix - Pd permeability coefficient for diffusion of water - SCL soluble cuticular lipids - MES morpholinoethane sulphonic acid  相似文献   

7.
The fine structure of the upper cuticular membrane (CM) of Clivia miniata leaves was investigated using electron microscopy. The CM is made up of a thin (130 nm) lamellated cuticle proper (CP) and a thick (up to 7 m over periclinal walls) cuticular layer (CL) of marbled appearance. Evidence is presented to show that the electron lucent lamellae of the CP do not simply represent layers of soluble cuticular lipids (SCL). Instead, the lamellation is probably due to layers of cutin differing in polarity. It is argued that the SCL in the Cp are the main barrier to water. Thickening of the CM during leaf development takes place by interposition of cutin between the CM and the cellin wall. The cutin of young, expanding leaves has a high affinity for KMnO4 and is therefore relatively polar. As leaves mature, the external CL underneath the CP becomes non-polar, as only little contrast can be obtained with permanganate as the post fixative.Abbreviations CM cuticular membrane - CP cuticle proper - CL cuticular layer - SCL soluble cuticular lipids (cuticular waxes)  相似文献   

8.
M. Riederer  G. Schneider 《Planta》1990,180(2):147-153
The constituents of the soluble cuticular lipids (SCL) of the leaf blades of Citrus aurantium L. were identified by gas chromatography-mass spectrometry and quantified. Major components were 1-alkanols (C24 to C40), n-alkyl esters (C36 to C56), n-alkanoic acids (C28 to C34), n-alkanes (C22 to C40) and triterpenones, while n-alkanals (C29 to C38), sterols, and alkyl benzenes (molecular weights 260, 274 and 288) made minor contributions. Leaf age and side significantly affected the quantitative composition of SCL. Increased day temperature during the development of leaves led to decreased amounts per unit area of n-alkanes, 1-alkanols, n-alkanoic acids and n-alkyl esters while increased night temperatures resulted in increased amounts of n-alkanes n-alkanoic acids and 1-alkanols. Relative humidity had no effect on the amounts or composition of SCL. The permeability of cuticular membranes to water (described in part I of this paper) and the composition of SCL were not related. A model for the molecular structure of the transport-limiting barrier of plant cuticles and for the transport of water across it is proposed.Abbreviations CM cuticular membrane - GC gas chromatogra-phy - MS mass spectroscopy - TLC thin-layer (planar) chromatography - SCL soluble cuticular lipids The authors are indebted to Dr. R. Winkler and H. Krause, Laboratorium für Strukturchemie des Fachbereichs Chemie, Biologie und Geowissenschaften, Technische Universität München, FRG, for performing the GC-MS analyses and their valuable help in the identification of SCL constituents. This work has been supported by the Deutsche Forschungsgemeinschaft and the Bayerische Staatsministerium für Wissenschaft und Kunst.  相似文献   

9.
The temperature-induced volume expansion of enzymatically isolated cuticular membranes of twelve plant species was measured. All cuticular membranes exhibited distinct second-order phase transitions in the temperature range of about 40 to 50° C. Increases in the volumes of fruit cuticles (Lycopersicon, Cucumis, Capsicum, Solanum and Malus) were fully reversible, while leaf cuticular membranes (Ficus, Hedera, Nerium, Olea, Pyrus, Picea and Citrus) underwent irreversible structural changes. Below the phase-transition temperature, volumetric expansion coefficients ranged from 0.39·10–6 m3·kg–1·K–1 to 0.62·10–6 m3·kg–1·K–1, and above from 0.60·106 m3·kg–1·K\-1 to 1.41· 10–6 m3·kg–1·K–1. Densities of cuticles at 25° C ranged from 1020 kg·m–3 to 1370 kg·m–3. Expansion coefficients and phase transitions were characteristic properties of the polymer matrix as a composite material, rather than of cutin alone. It is argued that the sudden increase of water permeability above the transition temperature, is caused by an increase of disorder at the interface between the polymer matrix and the soluble cuticular lipids. Possible ecological and physiological consequences of these results for living plants are discussed.Abbreviations CM Cuticular membrane - CU cutin - MX polymer matrix - SCL soluble cuticular lipids (waxes) The authors greatfully acknowledge stimulating discussions with Drs. H. Gruler (Exp. Physik 3, Universität Ulm, FRG) and M. Riederer (Institut für Botanik und Mikrobiologie, Technische Universität München, München, FRG) and financial support by the Deutsche Forschungsgemeinschaft.  相似文献   

10.
M. Riederer  J. Schönherr 《Planta》1986,169(1):69-80
The sorption of 4-nitrophenol (4-NP) in enzymatically isolated cuticles ofLycopersicon esculentum fruits andFicus elastica leaves was studied as a function of temperature and solute concentration. Plots of the concentrations of 4-NP sorbed in the cuticle versus the equilibrium concentrations in the aqueous phase gave linear isotherms at low concentrations that tended to approach plateaus at higher sorbate concentrations ( 10 mmol·kg-1). At low concentrations of sorbed 4-NP, cuticles have sorptive properties similar to those of organic solvents which are able to form intermolecular hydrogen bonds, while at higher concentrations their solid nature becomes apparent. During sorption of 4-NP the cutin matrix swells and new sorption sites are successively formed. The partition coefficients of 4-NP in the system cuticle/buffer are functions of temperature and concentration. At high sorbate concentrations (approx. 1 mol·kg-1) they approach a value of 1. Different sorptive properties were observed for the cutin regions normally encrusted with soluble cuticular lipids (SCL) and those without SCL. Increasing temperature augmented the number of sorption sites in the cutin ofLycopersicon while no effect was observed withFicus. The changes of partial molar free energy (G o tr), enthalpy (H o tr), and entropy (S o tr) for the phase transfer of 4-NP also depended on sorbate concentration: H o tr and S o tr were negative and steeply decreased at high sorbate concentrations. This is due to solute-solute interactions replacing solute-cutin interactions at high concentrations resulting in solid precipitates of solute within the cutin matrix. This formation of ordered solid domaines starting from a small number of nonelectrolyte molecules interacting with the cutin is proposed as a model for the intracuticular deposition of SCL.Abbreviations CM cuticular membrane - MX polymer matrix membrane - 4-NP 4-nitrophenol - SCL soluble cuticular lipids  相似文献   

11.
J. Schönherr  H. Ziegler 《Planta》1980,147(4):345-354
The water permeability of periderm membranes stripped from mature trees of Betula pendula Roth was investigated. The diffusion of water was studied using the system water/membrane/water, and transpiration was measured using the system water/membrane/water vapor. Betula periderm consists of successive periderm layers each made up of about 5 heavily suberized cell layers and a varying number of cell layers that are little suberized, if at all. It is shown that these layers act as resistances in series. The permeability coefficient of the diffusion of water (P d) can be predicted with 79% accuracy from the reciprocal of the membrane weight (x in mg cm-2) by means of the linear equation P d=14.69·10-7 x-0.73·10-7. For example, the P d of a periderm membrane having a weight of 10 mg cm-2 (approx. 250 m thick) is 7.4·10-8 cm s-1, which is comparable to the permeability of cuticles. This comparison shows that on a basis of unit thickness, Betula periderm is quite permeable to water as cuticles have the same resistance with a thickness of only 0.5 to 3 m. It is argued that this comparatively high water permeability of birch periderm is due to the fact that middle lamellae and the primary walls of periderm cells are not at all, or only incompletely suberized and, therefore, form a hydrophilic network within which the water can flow. This conclusion is based on the following observations: (1) Middle lamellae and primary walls stain strongly with toluidine blue, which shows them to be polar. (2) If silver ions are added as tracer for the flow of water, they are found only in the middle lamellae, primary walls, and in plasmodesmata, while no silver can be detected in the suberized walls. (3) Permeability coefficients of transpiration strongly depend on water activity. This shows conclusively that water flows across Betula periderm via a polar pathway. It is further argued that liquid continuity is likely to be maintained under all physiological conditions in the network formed by middle lamellae and primary walls. On the other hand, the lumina of periderm cells, intercellular air spaces in the lenticels, and even the pores in the suberized walls (remainders of plasmodesmata) will drain at a humidity of 95% and below. Due to the presence of intercellulars the permeability coefficient of lenticels is much greater than that of the periderm. A substantial amount of the total water, therefore, flows as vapor through lenticels even though they cover only 3% of the surface.Abbreviations PM perideron membrane - P d permeability coefficient for diffusion of water - P tt permeability coefficient of transpiration - MES (N-morpholino)ethane sulfonic acid  相似文献   

12.
Smith WK 《Plant physiology》1980,65(1):132-135
The quantitative importance of aerodynamic resistance to H2O vapor and CO2 exchange was determined for shoots from saplings of three conifers (Abies lasiocarpa [Hook] Nutt., Pinus contorta Dougl., Juniperus communis L.) under natural conditions in the field. A combination of relatively low stomatal resistances (<300 seconds per centimeter) and low wind speeds (<30 centimeters per second) led to substantial contributions of the aerodynamic resistance (Rwva) to water use efficiency (WUE = photosynthesis/transpiration) for all three species. For A. lasiocarpa, transpiration was calculated to be 44% less and photosynthesis 17% less due to the presence of Rwva, which led to a predicted increase in WUE of 57% compared to the calculated WUE when Rwva was assumed negligible. Similar increases in WUE were computed for P. contorta (48%) with somewhat smaller values for J. communis (34%). These results are discussed in terms of the estimated importance of Rwva on water and photosynthetic relations of plants that have relatively low stomatal resistances and grow in microhabitats with low winds.  相似文献   

13.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

14.
Summary Permeation parameters of isolated cuticular membranes of Citrus aurantium L. for gaseous monoterpenes were determined by an isostatic system. For -pinene and d-limonene permeability coefficients range from 4.3 × 10–11 m–2 s–1 to 7.3 × 10–11 m–2 s–1. These values can be compared to that measured for benzene gas at the cuticle of Citrus. The permeability coefficients of the two monoterpenes did not differ significantly, in contrast to their diffusioin coefficients. The diffusion coefficient values are 3.7 × 10–15 m–2 s–1 for limonene and 15.5 × 10–15 m–2 s–1 for -pinene. The reason for this difference is still unclear. A dependence of the permeation parameters on the direction of the monoterpene transport could not be observed. Moreover, there are some indications that, in spite of its heterogeneous character, the cuticular membrane of Citrus is homogeneous in respect to the transport of small gaseous molecules. An exposure to environmentally relevant ozone concentrations for 6 months did not change the permeation characteristics of the membrane. Due to the high variability of the samples only a tendency towards higher permeability coefficients of cuticles treated with 80 ppb ozone was observed. This may be attributed to a reduced tension of the membrane caused by chain fractions.This paper is dedicated to Prof. Dr. Otto Härtl, Graz, on the occasion of his 80th birthday.  相似文献   

15.
L. Schreiber  M. Riederer 《Oecologia》1996,107(4):426-432
Water permeabilities of astomatous, isolated cuticular membranes (CM) of 24 different plants species were measured. Permeances varied from 1.7×10–11 m·s–1 (Vanilla planifolia leaf) up to 2.1×10–9 m·s–1 (Malus cf. domestica fruit) among different plant species, thus covering a range of over 2 orders of magnitude. Ranking of species according to permeances resulted in four distinct groups. The first group, of species with the lowest cuticular transpiration rates, included evergreen species growing in warm dry tropical climates (e.g. Vanilla planifolia and Monstera deliciosa leaves). The second class, with slightly higher water permeabilities, included evergreen species with typical scleromorphic leaf properties, adapted to a typical mediterranean type of climate with a dry period during the year (e.g. Citrus limon and Olea europaea leaves). The third group of species, where the highest leaf cuticular transpiration rates were observed, included deciduous species normally growing in a tempeate climate (e.g. Juglans regia and Forsythia suspensa leaves). Fruit cuticular membranes (CM) made up the fourth group (e.g. Capsicum annuum and Malus cf. domestica fruits), with even higher permeances than leaves of species from group 3. Thus, it appears that the plant species investigated show ecophysiological adaptations to the climatic demands of their natural habitats in cuticular water permeability.  相似文献   

16.
Solute mobilities of 28 compounds in isolated cuticular membranes (CM) from Capsicum annuum L. fruit, Citrus aurantium L. and Pyrus communis L. leaves were studied using unilateral desorption from the outer surface. First-order rate constants of desorption (k*), which are directly proportional to the diffusion coefficient in the waxy outer limiting skins of cuticles were measured. When log k* was plotted vs. molar volumes of test compounds linear graphs were obtained. The y-intercepts of these graphs (k*) represent the mobility of a hypothetical molecule having zero molar volume and the slopes of the graphs () represent the size selectivity of the barrier and are related to the free volume available for diffusion. Thus, solute mobilities in cuticles are composed of two independent terms which are subtractive. If k* and are known, k* can be estimated for any solute from its molar volume (Vx) using the equation log k*=log k* –Vx. These parameters were used to analyse the effects of plant species, extraction of cuticular waxes and molecular structure of solutes on solute mobilities in plant cuticles. For aliphatic solutes, k* was a factor of 10 smaller than for cyclic compounds, while was 0.011 and 0.012, respectively. The k*-values for CM of the three species were very similar, but was higher for bitter-orange CM (0.012) than for those of pepper fruits and pear leaves (0.009). This has the consequence that differences in solute mobilities (k*) among cuticles from different plan species increase with increasing molar volumes of solutes. Our data and our analysis provide evidence that constituents of cuticular waxes are mobile, at least in the solid amorphous wax fraction, but mobility decreases rapidly with increasing molar volume. For instance, if amounts to 0.01, mobilities of wax monomers decrease by a factor of 10 for every increase in molar volume of 100 cm3 · mol–1. Thus, hexadecanoic acid is quite mobile in the amorphous wax fraction of Citrus (k*=1.5×10–6·s–1), but for dotriacontane having twice the molar volume, k* was only 2.5×10–9·s–1, which is almost three orders of magnitude smaller. Wax esters have even higher molar volumes and their mobilities will be even smaller (about 4×10–12·s–1 for a C48-ester). Since low chain mobilities are a prerequisite for low mobilities and permeabilities, the selective advantage of high-molecular-weight wax monomers in plant cuticular waxes becomes obvious. Extracting cuticular waxes from pear leaf CM increased solute mobilities by a factor of 182, but it had no effect on size selectivity. We interpret this result as evidence to the effect that cuticular waxes reduce mobility by increasing tortuosity of the diffusion path, rather than by decreasing the mean free path of diffusional jumps and jump frequencies of diffusants.Abbreviations CM cuticular membrane(s) - 2,4-D 2,4-dichloro-phenoxyacetic acid - LAB lactic acid buffer - MX polymer matrix membranes - UDOS unilateral desorption from the outer surface  相似文献   

17.
The Kleier model of phloem-mobility of xenobiotics combines the intermediate permeability hypothesis with the acid trap mechanism for weak acids. The output of the model is dependent on the lipophilicity of a compound, for which octanol/water partition coefficients (log Kow) have been used as a measure. The membrane permeability of xenobiotics is predicted from these partition coefficients, and the nature of the sieve tube membranes has been modelled using regressions derived from Nitella or potato permeability data. A wide range of log Kow values for herbicides, fungicides, insecticides and experimental compounds (400) have been tabulated along with the model output for various membrane parameters. The application of the model is in broad agreement with literature and experimental observations on many of the known phloem mobile herbicides and predicts low phloem mobility for the fungicides and insecticides considered here, again in agreement with the literature. The behaviour of herbicides representative of the main chemical families and modes of action are reviewed, along with examples of the few phloem-mobile fungicides and insecticides identified.Abbreviations Kow octanol-water partition coefficient - pKa –log10 acid dissociation constant - Cf Concentration factor - P membrane permeability  相似文献   

18.
Summary Using isolated cuticular membranes from ten woody and herbaceous plant species, permeance and diffusion coefficients for water were measured, and partition coefficients were calculated. The cuticular membranes of fruit had much higher permeance and diffusion coefficients than leaf cuticular membranes from either trees or herbs. Both diffusion and partition coefficients increased with increasing membrane thickness. Thin cuticles, therefore, tend to be better and more efficient water barriers than thick cuticles. We compared the diffusion coefficients and the water content of cuticles as calculated from transport measurements with those obtained from water vapor sorption. There is good to fair agreement for cuticular membranes with a low water content, but large discrepancies appear for polymer matrix membranes with high permeance. This is probably due to the fact that diffusion coefficients obtained from transport measurements on membranes with high permeance and water content are underestimated. Water permeabilities of polyethylene and polypropylene membranes are similar to those of leaf cuticular membranes. However, leaf cuticles have much lower diffusion coefficients and a much greater water content than these synthetic polymers. This suggests that cuticles are primarily mobility barriers as far as water transport is concerned.  相似文献   

19.
An oligonucleotide directed against a highly conserved region of aa3-type cytochrome c oxidases was used to clone the cox genes from the cyanobacterium Synechocystis sp. PCC6803. Several overlapping clones were obtained that contained the coxB, coxA, and coxC genes, transcribed in the same direction in that order, coding for subunits II, I, and III, respectively. The deduced protein sequences of the three subunits showed high sequence similarity with the corresponding subunits of all known aa3-type cytochrome c oxidases. A 1.94-kb HindII fragment containing most of coxA and about half of coxC was deleted and replaced by a cassette coding for kanamycin resistance. Mutant cells that were homozygous for the deleted cox locus were obtained. They were viable under photoautotrophic and photoheterotrophic conditions, but contained no cytochrome c oxidase activity. Nevertheless, these mutant cells showed almost normal respiration, defined as cyanide-inhibitable O2 uptake by whole cells in the dark. It is concluded, therefore, that aa3-type cytochrome c oxidase is not the only terminal respiratory oxidase in Synechocystis sp. PCC6803.Abbreviations CM cytoplasmic membrane - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HQNO 2-heptyl-4-hydroxyquinoline N-oxide - ICM intracytoplasmic membranes - SU subunit - TES (N-tris(hydroxymethyl)methyl)-2-aminoethane sulfonic acid  相似文献   

20.
Summary The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested.Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m-1 and 0.004° C m-1) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m-1 to 0.010° C m-1). However, transpirational fluxes at higher elevations were considerably greater than expected for all leaves, especially larger leaves, due to the strong influence of increased solar heating and a greater D wv. These results are discussed in terms of similarities in leaf structure and plant habit observed among low-elevation desert plants and high-elevation alpine and subalpine plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号