首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substitution of pancreatic islets is a potential therapy to treat diabetes and it depends on reconstitution of islet’s capillary network. In this study, we addressed the question whether stabilization of Glucagon-Like-Peptide-1 (GLP-1) by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) increases β-cell mass by modulating vascularization. Mouse or porcine donor islets were implanted under kidney capsule of diabetic mice treated with DPP-IV inhibitor sitagliptin. Grafts were analyzed for insulin production, β-cell proliferation and vascularization. In addition, the effect of sitagliptin on sprouting and Vascular Endothelial Growth Factor (VEGF)-A expression was examined ex vivo. The cAMP response element-binding (CREB) and VEGF-A/ Vascular Endothelial Growth Factor Receptor (VEGFR)-2 signaling pathway leading to islet vascularization was explored. Sitagliptin increased mean insulin content of islet grafts and area of insulin-positive tissue as well as β-cell proliferation. Interestingly, sitagliptin treatment also markedly increased endothelial cell proliferation, microvessel density and blood flow. Finally, GLP-1 (7-36) stimulated sprouting and VEGF expression, which was significantly enhanced by sitagliptin- mediated inhibition of DPP-IV. Our in vivo data demonstrate that sitagliptin treatment phosphorylated CREB and induced islet vascularization through VEGF-A/VEGFR-2 signaling pathway. This study paves a new pathway for improvement of islet transplantation in treating diabetes mellitus.  相似文献   

2.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

3.
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states.  相似文献   

4.
Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF(165) induces RET-tyr(1062) phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF(165) and GDNF have additive effects on RET-tyr(1062) phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF(165) induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF(165) induces RET-tyr(1062) phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells.  相似文献   

5.
Evidence is accumulating that activation of the pancreatic endoplasmic reticulum kinase (PERK) in response to endoplasmic reticulum (ER) stress adapts tumor cells to the tumor microenvironment and enhances tumor angiogenesis by inducing vascular endothelial growth factor A (VEGF-A). Recent studies suggest that VEGF-A can act directly on certain tumor cell types in an autocrine manner, via binding to VEGF receptor 2 (VEGFR2), to promote tumor cell migration and invasion. Although several reports show that PERK activation increases VEGF-A expression in medulloblastoma, the most common solid malignancy of childhood, the role that either PERK or VEGF-A plays in medulloblastoma remains elusive. In this study, we mimicked the moderate enhancement of PERK activity observed in tumor patients using a genetic approach and a pharmacologic approach, and found that moderate activation of PERK signaling facilitated medulloblastoma cell migration and invasion and increased the production of VEGF-A. Moreover, using the VEGFR2 inhibitor SU5416 and the VEGF-A neutralizing antibody to block VEGF-A/VEGFR2 signaling, our results suggested that tumor cell-derived VEGF-A promoted medulloblastoma cell migration and invasion through VEGFR2 signaling, and that both VEGF-A and VEGFR2 were required for the promoting effects of PERK activation on medulloblastoma cell migration and invasion. Thus, these findings suggest that moderate PERK activation promotes medulloblastoma cell migration and invasion through enhancement of VEGF-A/VEGFR2 signaling.  相似文献   

6.
Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation and is a key mechanism regulating alveolarization in lungs of newborn rats. Hyperoxia exposure (>95% O2 days 4-14) arrests lung alveolarization and may do so through suppression of the VEGF signaling system. Lung tissue mRNA levels of HIF-2alpha and VEGF increased from days 4-14 in normoxic animals, but hyperoxia suppressed these increases. Levels of HIF-2alpha and VEGF mRNA were correlated in the air but not the O2-treated group, suggesting that the low levels of HIF-2alpha observed at high O2 concentrations are not stimulating VEGF expression. VEGF164 protein levels increased with developmental age, and with hyperoxia to day 9, but continuing hyperoxia decreased levels by day 12. VEGFR1 and VEGFR2 mRNA expression also increased in air-exposed animals, and these, too, were significantly decreased by hyperoxia by day 9 and day 12, respectively. Receptor protein levels did not increase with development; however, O2 did decrease protein to less than air values. Hyperoxic suppression of VEGF signaling from days 9-14 may be one mechanism by which alveolarization is arrested.  相似文献   

7.
Vascular endothelial growth factor A (VEGF-A)-induced signaling through VEGF receptor 2 (VEGFR2) regulates both physiological and pathological angiogenesis in mammals. However, the temporal and spatial mechanism underlying VEGFR2-mediated intracellular signaling is not clear. Here, we define a pathway for VEGFR2 trafficking and proteolysis that regulates VEGF-A-stimulated signaling and endothelial cell migration. Ligand-stimulated VEGFR2 activation and ubiquitination preceded proteolysis and cytoplasmic domain removal associated with endosomes. A soluble VEGFR2 cytoplasmic domain fragment displayed tyrosine phosphorylation and activation of downstream intracellular signaling. Perturbation of endocytosis by the depletion of either clathrin heavy chain or an ESCRT-0 subunit caused differential effects on ligand-stimulated VEGFR2 proteolysis and signaling. This novel VEGFR2 proteolysis was blocked by the inhibitors of 26S proteasome activity. Inhibition of proteasome activity prolonged VEGF-A-induced intracellular signaling to c-Akt and endothelial nitric oxide synthase (eNOS). VEGF-A-stimulated endothelial cell migration was dependent on VEGFR2 and VEGFR tyrosine kinase activity. Inhibition of proteasome activity in this assay stimulated VEGF-A-mediated endothelial cell migration. VEGFR2 endocytosis, ubiquitination and proteolysis could also be stimulated by a protein kinase C-dependent pathway. Thus, removal of the VEGFR2 carboxyl terminus linked to phosphorylation, ubiquitination and trafficking is necessary for VEGF-stimulated endothelial signaling and cell migration.  相似文献   

8.
Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.  相似文献   

9.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

10.
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A–E), receptor types (VEGFR1–3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.  相似文献   

11.
12.
Integrin alpha x (ITGAX), a member of the integrin family, usually serves as a receptor of the extracellular matrix. Recently, accumulating evidence suggests that ITGAX may be involved in angiogenesis in dendritic cells. Herein, we report a direct role of ITGAX in angiogenesis during tumor development. Overexpression of ITGAX in human umbilical vein endothelial cells (HUVECs) enhanced their proliferation, migration, and tube formation and promoted xenograft ovarian tumor angiogenesis and growth. Further study showed that overexpression of ITGAX activated the PI3k/Akt pathway, leading to the enhanced expression of c-Myc, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor 2 (VEGFR2), whereas, the treatment of cells with PI3K inhibitor diminished these effects. Besides, c-Myc was observed to bind to the VEGF-A promoter. By Co-Immunoprecipitation (Co-IP) assay, we manifested the interaction between ITGAX and VEGFR2 or the phosphorylated VEGFR2. Immunostaining of human ovarian cancer specimens suggested that endothelial cells of micro–blood vessels displayed strong expression of VEGF-A, c-Myc, VEGFR2, and the PI3K signaling molecules. Also, overexpression of ITGAX in HUVECs could stimulate the spheroid formation of ovarian cancer cells. Our study uncovered that ITGAX stimulates angiogenesis through the PI3K/Akt signaling–mediated VEGFR2/VEGF-A overexpression during cancer development.  相似文献   

13.
Some individuals infected with dengue virus develop dengue hemorrhagic fever (DHF), a viral hemorrhagic disease characterized by a transient period of localized plasma leakage. To determine the importance of vascular endothelial growth factor A (VEGF-A) in this syndrome, we compared plasma levels of VEGF-A and the soluble forms of its receptors in patients with DHF to patients with dengue fever (DF), a milder form of dengue virus infection without plasma leakage. We observed a rise in the plasma levels of free, but not total VEGF-A in DHF patients at the time of plasma leakage. This was associated with a decline in the soluble form of VEGF receptor 2 (VEGFR2) and VEGF-soluble VEGFR2 complexes, but not the soluble form of VEGFR1. The severity of plasma leakage in patients inversely correlated with plasma levels of soluble VEGFR2. In vitro, dengue virus suppressed soluble VEGFR2 production by endothelial cells but up-regulated surface VEGFR2 expression and promoted response to VEGF stimulation. In vivo, plasma viral load correlated with the degree of decline in plasma soluble VEGFR2. These results suggest that VEGF regulates vascular permeability and its activity is controlled by binding to soluble VEGFR2. Dengue virus-induced changes in surface and soluble VEGFR2 expression may be an important mechanism of plasma leakage in DHF.  相似文献   

14.
The hemangioblast in the mesoderm gives rise to both angioblasts and hematopoietic stem cells. The movement of hemangioblast precursor cells in the fetal trunk is a critical event in early embryogenesis. Vascular endothelial growth factor (VEGF) signaling is likely involved in this migration given the partial disturbance of VEGF receptor (VEGFR)-positive cell accumulation and migration in VEGFR2 null mice or mice with a truncated VEGFR1. However, it is not clear how the VEGF system regulates this migration or its direction. We show here that the expression of VEGF-A is dominant in the anterior portion of the embryo, whereas VEGFR1 and VEGFR2 are expressed in the posterior portion of the embryo. An inhibitor of VEGFR kinase blocked the migration of VEGFR-positive cells in a whole-embryo culture system. In addition, VEGFR-positive cells migrated toward a VEGFR1- or VEGFR2-specific ligand in vitro. Furthermore, VEGFR-positive cells derived from wild-type or VEGFR2(+/-) mice moved rapidly anteriorly, whereas cells derived from VEGFR2(+/-) mice carrying a truncated VEGFR1 [VEGFR1(TM-TK)(-/-)] migrated little when injected into wild-type mice. These results suggest that the VEGF-A protein concentrated in the anterior region plays an important role in the guidance of VEGFR-positive cells from the posterior portion to the head region by interacting with VEGFR in the mouse embryo.  相似文献   

15.
Tumor growth and metastasis require the generation of new blood vessels, a process known as neo-angiogenesis. Recent studies have indicated that early tumor vascularization is characterized by the differentiation and mobilization of human bone marrow cells. Vascular endothelial growth factor-A (VEGF-A) is one of the growth factors, which enhances their differentiation into endothelial cells, but little is known about the implication of the VEGF-receptor tyrosine kinases and about the implication of the VEGF-R co-receptor, neuropilin-1, in this process. In this context, the identification of the molecular pathways that support the proliferation and differentiation of vascular stem and progenitor cells was investigated in order to define the pharmaceutical targets involved in tissue vascularization associated with this process. For this purpose, an in vitro model of differentiation of human bone marrow AC133+ (BM-AC133+) cells into vascular precursors was used. In this work, we have demonstrated for the first time that the effect of VEGF-A on BM-AC133+ cells relies on an early action of VEGF-A on the expression of its tyrosine kinase receptors followed by an activation of a VEGF-R2/neuropilin-1-dependent signaling pathway. This signaling promotes the differentiation of BM-AC133+ cells into endothelial precursor cells, followed by the proliferation of these differentiated cells. Altogether, these results strongly suggest that VEGF inhibitors, acting at the level of VEGF-R2 and/or neuropilin-1, by inhibiting differentiation and proliferation of these cells, could be potentially active compounds to prevent progenitor cells to be involved in tumor angiogenesis leading to tumor growth.  相似文献   

16.
Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-Cgamma-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.  相似文献   

17.
Vascular smooth muscle cells (SMCs), one of the major cell types of the vascular wall, play a critical role in the process of angiogenesis under both physiological and pathophysiological conditions, including the cancer microenvironment. Previous studies have shown that VEGF-A 165 augments vascular SMC migration via VEGFR2 (KDR/Flk1) pathways. In this study, we found that VEGF-A 165 (recombinant protein or breast tumor cell-secreted) is also capable of inducing migration of VEGFR2-negative human aortic smooth muscle cells (hAOSMCs), and this induction is mediated through a molecular cross-talk of neuropilin-1 (NRP-1), VEGFR1 (Flt-1), and phosphoinositide 3-kinase (PI3K)/Akt signaling kinase. We found that VEGF-A 165 induces hAOSMC migration parallel with the induction of NRP-1 and VEGFR1 expressions and their associations along with the activation of PI3K/Akt. Neutralization of VEGF action by its antibody or inhibition of VEGF-induced PI3K/Akt kinase activation by wortmannin, a PI3K/Akt specific inhibitor, results in inhibition of VEGF-induced hAOSMC migration. Moreover, RNAi-mediated elimination of the NRP-1 expression or blocking of the activity of VEGFR1 by its antibody in hAOSMCs impairs the VEGF-A 165-induced migration of these cells as well as activation of PI3K/Akt kinase. Collectively, these results establish, for the first time, a mechanistic link among VEGF-A 165, NRP-1, VEGFR1, and PI3K/Akt in the regulation of migration of human vascular smooth muscle cells that eventually could be involved in the angiogenic switch.  相似文献   

18.
The longer splice isoforms of vascular endothelial growth factor-A (VEGF-A), including mouse VEGF164, contain a highly basic heparin-binding domain (HBD), which imparts the ability of these isoforms to be deposited in the heparan sulfate-rich extracellular matrix and to interact with the prototype sulfated glycosaminoglycan, heparin. The shortest isoform, VEGF120, lacks this highly basic domain and is freely diffusible upon secretion. Although the HBD has been attributed significant relevance to VEGF-A biology, the molecular determinants of the heparin-binding site are unknown. We used site-directed mutagenesis to identify amino acid residues that are critical for heparin binding activity of the VEGF164 HBD. We focused on basic residues and found Arg-13, Arg-14, and Arg-49 to be critical for heparin binding and interaction with extracellular matrix in tissue samples. We also examined the cellular and biochemical consequences of abolishing heparin-binding function, measuring the ability of the mutants to interact with VEGF receptors, induce endothelial cell gene expression, and trigger microvessel outgrowth. Induction of tissue factor expression, vessel outgrowth, and binding to VEGFR2 were unaffected by the HBD mutations. In contrast, the HBD mutants showed slightly decreased binding to the NRP1 (neuropilin-1) receptor, and analyses suggested the heparin and NRP1 binding sites to be distinct but overlapping. Finally, mutations that affect the heparin binding activity also led to an unexpected reduction in the affinity of VEGF164 binding specifically to VEGFR1. This finding provides a potential basis for previous observations suggesting enhanced potency of VEGF164 versus VEGF120 in VEGFR1-mediated signaling in inflammatory cells.  相似文献   

19.
Low oxygen stimulates pulmonary vascular development and airway branching and involves hypoxia-inducible factor (HIF). HIF is stable and initiates expression of angiogenic factors under hypoxia, whereas normoxia triggers hydroxylation of the HIF-1alpha subunit by prolyl hydroxylases (PHDs) and subsequent degradation. Herein, we investigated whether chemical stabilization of HIF-1alpha under normoxic (20% O(2)) conditions would stimulate vascular growth and branching morphogenesis in early lung explants. Tie2-LacZ (endothelial LacZ marker) mice were used for visualization of the vasculature. Embryonic day 11.5 (E11.5) lung buds were dissected and cultured in 20% O(2) in the absence or presence of cobalt chloride (CoCl(2), a hypoxia mimetic), dimethyloxalylglycine (DMOG; a nonspecific inhibitor of PHDs), or desferrioxamine (DFO; an iron chelator). Vascularization was assessed by X-gal staining, and terminal buds were counted. The fine vascular network surrounding the developing lung buds seen in control explants disappeared in CoCl(2)- and DFO-treated explants. Also, epithelial branching was reduced in the explants treated with CoCl(2) and DFO. In contrast, DMOG inhibited branching but stimulated vascularization. Both DFO and DMOG increased nuclear HIF-1alpha protein levels, whereas CoCl(2) had no effect. Since HIF-1alpha induces VEGF expression, the effect of SU-5416, a potent VEGF receptor (VEGFR) blocker, on early lung development was also investigated. Inhibition of VEGFR2 signaling in explants maintained under hypoxic (2% O(2)) conditions completely abolished vascularization and slightly decreased epithelial branching. Taken together, the data suggest that DMOG stabilization of HIF-1alpha during early development leads to a hypervascular lung and that airway branching proceeds without the vasculature, albeit at a slower rate.  相似文献   

20.
Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号