首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preparation of recombinant RNase single-chain antibody fusion proteins   总被引:4,自引:0,他引:4  
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.  相似文献   

2.
The gonadotropin hormone family is distinguished by its heterodimeric structure in which the members share a common alpha subunit and a hormone-specific beta subunit. Since assembly of the heterodimer is often the rate-limiting step in production of functional hormone, single-chain hormones have been engineered by genetically linking the two subunits. The single-chain hormone can in turn be fused to its receptor to produce a functional single-chain hormone-receptor complex. These fusion constructs offer a valuable new approach in structure-function studies and in the generation of hormone analogs. In this article we describe the experimental design for the generation of single-chain human chorionic gonadotropin and single-chain hormone-receptor fusion complex and strategies for the expression of these fusion proteins.  相似文献   

3.
The binding domain structure of retinoblastoma-binding proteins.   总被引:5,自引:0,他引:5       下载免费PDF全文
The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding.  相似文献   

4.
Recombinant gene expression in the prokaryotic host Escherichia coli is of general interest for both biotechnology and basic research. Use of E. coli is inexpensive and advantageous due to the fully developed genetic accessibility. However, often insoluble target protein (inclusion body) accumulates in the cell. Especially when producing eukaryotic or disulfide bridged proteins in E. coli, inclusion body formation is observed. Nonetheless, insoluble protein can be regained and refolded in vitro. Commonly, renaturation of proteins is accomplished by methods involving dilution and/or dialysis. An interesting alternative is matrix-assisted refolding in which the denatured protein is refolded in the immobilized state. Here, matrix-assisted refolding was applied to refold a double cysteine variant of Hsp26, a small heat-shock protein from Saccharomyces cerevisiae which was insoluble after biosynthesis in E. coli BL21 (DE3) cells. This oligomeric protein was efficiently recovered from the insoluble fraction and refolded to its native oligomeric and chaperone-active state using ion exchange and size exclusion chromatography.  相似文献   

5.
A single-chain antibody fragment has been constructed for an antibody that binds to the Chlamydia specific carbohydrate structure of the lipopolysaccharide. Single-chain protein was expressed and secreted into the periplasmic space of E. coli as a fusion protein with the maltose binding protein. The fusion protein was purified in one step by virtue of its ability to bind to maltose. In a sandwich ELISA, the eluted protein bound Chlamydia lipopolysaccharide, which demonstrates that the single-chain protein domain will function as part of a fusion protein. The expression of maltose binding fusion proteins into the periplasmic space could be used for production of other single-chain antibodies or protein fragments requiring appropriate folding and disulfide bond formation.  相似文献   

6.
The gradual removal of the denaturing reagent guanidine HCl (GdnHCl) using stepwise dialysis with the introduction of an oxidizing reagent and l-arginine resulted in the highly efficient refolding of various denatured single-chain Fv fragments (scFvs) from inclusion bodies expressed in Escherichia coli. In this study, the influence of the additives on the intermediates in scFv refolding was carefully analyzed on the basis of the stepwise dialysis, and it was revealed that the additive effect critically changes the pathway of scFv refolding. Circular dichroism and tryptophan fluorescence emission spectroscopies demonstrated that distinct secondary and tertiary structures were formed upon dialysis from 2 m GdnHCl to 1 m GdnHCl, and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid dipotassium salt binding analysis indicated that the addition of l-arginine to the stepwise dialysis system effectively stabilized the exposed hydrophobic area on the scFv. Quantification of the free thiol groups in the scFv by means of Ellman's assay revealed that there was a particular stage in which most of the free thiol groups were oxidized and that adding an oxidizing reagent (the oxidized form of glutathione, GSSG) at that stage was important for complete refolding of the scFv. The particular stage depended on the nature of the refolding solution, especially on whether l-arginine was present. Spontaneous folding at the 1 m GdnHCl stage resulted in a structure in which a free thiol group accessed to the proper one for correct disulfide linkage; however, the addition of l-arginine resulted in the formation of a partially folded intermediate without disulfide linkages. Mass spectrometry experiments on alkylated scFv were carried out at each stage to determine the effects of l-arginine. The spectroscopic studies revealed two different pathways for scFv refolding in the stepwise dialysis system, pathways that depended on whether l-arginine was present. Controlled coupling of the effects of GSSG and l-arginine led to the complete refolding of scFv in the stepwise dialysis.  相似文献   

7.
In an attempt to improve TRAIL''s (tumor necrosis factor-related apoptosis-inducing ligand) tumor selective activity a variant was designed, in which the three TRAIL protomers are expressed as a single polypeptide chain (scTRAIL). By genetic fusion with a single-chain antibody fragment (scFv) recognizing the extracellular domain of ErbB2, we further equipped scTRAIL with tumor-targeting properties. We studied tumor targeting and apoptosis induction of scFv–scTRAIL in comparison with non-targeted scTRAIL. Importantly, the tumor antigen-targeted scTRAIL fusion protein showed higher apoptotic activity in vitro, with a predominant action by TRAIL-R2 signaling. Pharmacokinetic studies revealed increased plasma half-life of the targeted scTRAIL fusion protein compared with scTRAIL. In vivo studies in a mouse tumor model with xenotransplanted Colo205 cells confirmed greater response to the ErbB2-specific scTRAIL fusion protein compared with non-targeted scTRAIL both under local and systemic application regimen. Together, in vitro and in vivo data give proof of concept of higher therapeutic activity of tumor-targeted scFv–scTRAIL molecules. Further, we envisage that through targeting of scTRAIL, potential side effects should be minimized. We propose that scFv-mediated tumor targeting of single-chain TRAIL represents a promising strategy to improve TRAIL''s antitumoral action and to minimize potential unwanted actions on normal tissues.  相似文献   

8.
A single-chain antibody fragment has been constructed for an antibody that binds to theChlamydia specific carbohydrate structure of the lipopolysaccharide. Single-chain protein was expressed and secreted into the periplasmic space ofE. coli as a fusion protein with the maltose binding protein. The fusion protein was purified in one step by virtue of its ability to bind to maltose. In a sandwich ELISA, the eluted protein boundChlamydia lipopolysaccharide, which demonstrates that the single-chain protein domain will function as part of a fusion protein. The expression of maltose binding fusion proteins into the periplasmic space could be used for production of other single-chain antibodies or protein fragments requiring appropriate folding and disulfide bond formation.  相似文献   

9.
酶的固定化作为一种重要的技术,已在生物催化领域得到了广泛的应用。现将来源于普拉特链霉菌3304(Streptomyces platensis NTU3304)产生的胞外L-谷氨酸氧化酶(L-glutamate oxidase,Gox)基因gox融合到来源于粪碱纤维单胞菌Cellulomonas fimi的纤维素结合域(CBDcex)的基因上,构建表达载体p ETM10-Gox-CBD,并在大肠杆菌中表达。通过蛋白纯化获得融合蛋白,并命名为Gox-CBD。利用CBD对微晶纤维素特异性吸附的特性将其固定在微晶纤维素上,并对固定化酶的制备条件、结合量、酶学性质及其微晶纤维素结合稳定性等进行了研究。在4℃条件下结合约1 h,融合蛋白Gox-CBD结合在纤维素上的结合量即可达到9.0 mg/g。通过对重组型、融合表达游离的以及固定化在微晶纤维素上的谷氨酸氧化酶的酶学性质进行比较发现,固定化酶的比酶活有所降低;但固定化酶的热稳定性相对于游离酶有了很大的提高,在60℃孵育30 min后还保留有约70%的活性,而游离的重组Gox在相同条件下几乎完全失去活性。当固定化结合蛋白在p H10或者盐浓度5 mmol/L的Na Cl条件下可以牢固结合。并且可以通过一步纯化方法固定化融合蛋白Gox-CBD于微晶纤维素上。因此,L-谷氨酸氧化酶与纤维素结合域融合表达的研究为蛋白的纯化及酶的固定化提供了一种新策略。  相似文献   

10.
A novel strategy for micropatterning proteins on the surface of polyhydroxyalkanoate (PHA) biopolymer by microcontact printing (microCP) is described. The substrate binding domain (SBD) of the Pseudomonas stutzeri PHA depolymerase was used as a fusion partner for specifically immobilizing proteins on PHA substrate. Enhanced green fluorescent protein (EGFP) and red fluorescent protein (RFP) fused to the SBD could be specifically immobilized on the micropatterns of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Laser scanning confocal microscopic studies suggested that two fusion proteins were micropatterned in their functionally active forms. Also, antibody binding assay by surface plasmon resonance suggested that protein-protein interaction studies could be carried out using this system.  相似文献   

11.
A series of single-chain anti-CD20 antibodies was produced by fusing single-chain Fv (scFv) with human IgG1 hinge and Fc regions, designated scFv-Fc. The initial scFv-Fc construct was assembled using an 18 amino acid (aa) linker between the antibody light- and heavy-chain variable regions, with the Cys residue in the upper hinge region (Kabat 233) mutagenized to Ser. Anti-CD20 scFv-Fc retained specific binding to CD20-positive cells and was active in mediating complement-dependent cytolysis. Size-exclusion HPLC analysis revealed that the purified scFv-Fc included multimeric as well as monomeric components. Variant scFv-Fcs were constructed incorporating four different hinges between the scFv and Fc regions, or three different linkers in the scFv domain. All formed multimers, with the highest level of multimerization found in the scFv-Fc with the shortest linker (8 aa). Elimination of an unusual salt bridge between residues L38 and H89 in the V(L)-V(H) domain interface failed to reduce the formation of higher order forms. Structural analysis of the scFv-Fc constructed with 18 or 8 aa linkers by pepsin or papain cleavage suggested the proteins contained a form in which scFv units had cross-paired to form a 'diabody'. Thus, domain exchange or cross-pairing appears to be the basis of the observed multimerization.  相似文献   

12.
The extracellular matrix provides structural components that support the development of tissue morphology and the distribution of growth factors that modulate the overall cellular response to those growth factors. The ability to manipulate the presentation of factors in culture systems should provide an additional degree of control in regulating the stimulation of factor-dependent cells for tissue engineering applications. Cellulose binding domain (CBD) fusion protein technology facilitates the binding of bioactive cytokines to cellulose materials, and has permitted the analysis of several aspects of cell stimulation by surface-localized growth factors. We previously reported the synthesis and initial characterization of a fusion protein comprised of a CBD and murine stem cell factor (SCF) (Doheny et al. [1999] Biochem J 339:429-434). A significant advantage of the CBD fusion protein system is that it permits the stimulation of factor-dependent cells with localized growth factor, essentially free of nonfactor-derived interactions between the cell and matrix. In this work, the long-term stability and bioactivity of SCF-CBD fusions adsorbed to microcrystalline cellulose under cell culture conditions is demonstrated. Cellulose-bound SCF-CBD is shown to stimulate receptor polarization in the cell membrane and adherence to the cellulose matrix. In addition, cellulose-surface presentation of the SCF-CBD attenuates c-kit dephosphorylation kinetics, potentially modulating the overall response of the cell to the SCF signal.  相似文献   

13.
Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.  相似文献   

14.
West Nile virus has spread rapidly across the United States, and there is currently no approved human vaccine or therapy to prevent or treat disease. Passive immunization with antibodies against the envelope protein represents a promising means to provide short-term prophylaxis and treatment for West Nile virus infection. In this study, we identified a panel of 11 unique human single-chain variable region antibody fragments (scFvs) that bind the envelope protein of West Nile virus. Selected scFvs were converted to Fc fusion proteins (scFv-Fcs) and were tested in mice for their ability to prevent lethal West Nile virus infection. Five of these scFv-Fcs, 11, 15, 71, 85, and 95, protected 100% of mice from death when given prior to infection with virus. Two of them, 11 and 15, protected 80% of mice when given at days 1 and 4 after infection. In addition, four of the scFv-Fcs cross-neutralized dengue virus, serotype 2. Binding assays using yeast surface display demonstrated that all of our scFvs bind to sites within domains I and II of West Nile virus envelope protein. These recombinant human scFvs are potential candidates for immunoprophylaxis and therapy of flavivirus infections.  相似文献   

15.
Two antibody single-chain Fv (scFv) fragments carrying five C-terminal histidine residues were expressed inEscherichia coli as periplasmic inclusion bodies. Their variable heavy (VH) and light (VL) domains are derived from the mouse monoclonal antibody 215 (MAb215), specific for the largest subunit of RNA polymerase II ofDrosophila melanogaster and rat MAb Yol1/34, specific for pig brain α-tubulin. ScFv-215 contains an additional cysteine residue near to its C-terminus. After solubilization of inclusion bodies followed by immobilized metal affinity chromatography (IMAC) in 6M urea and a renaturation procedure, scFv monomers, noncovalent dimers, and aggregated antibody fragments were separated by size exclusion chromatography. In addition, a fraction of disulfide-bonded scFv-215 homodimers (scFv′)2 was also isolated. The various antibody forms appear to be in equilibrium after renaturation since first peak composed mainly of aggregates could be resolved into a similar pattern of aggregates, dimers, and monomers after repeating the denaturation/renaturation procedure. All fractions of the recombinant scFv-215 demonstrated high antigen-binding activity and specificity as shown by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Affinity measurements carried out by competitive immunoassays showed that covalently linked (scFv′)2 have binding constants quite close to those of the parental MAbs and fourfold higher than scFv′ monomers. ScFv derivatives, specifically biotinylated through the free sulfhydryl group, recognize the corresponding antigen in ELISA and Western blot analysis, thus demonstrating the possibility of using chemically modified scFv antibodies for immunodetection.  相似文献   

16.
Expression of recombinant proteins in Escherichia coli often leads to formation of inclusion bodies (IB). If a recombinant protein contains one or more disulfide bonds, protein refolding and thiol oxidation reactions are required to recover its biological activity. Previous studies have demonstrated that molecular chaperones and foldases assist with the in vitro protein refolding. However, their use has been limited by the stoichiometric amount required for the refolding reaction. In search of alternatives to facilitate the use of these folding biocatalysts in this study, DsbA, DsbC, and the apical domain of GroEL (AD) were fused to the carbohydrate-binding module CBDCex of Cellulomonas fimi. The recombinant proteins were purified and immobilized in cellulose and used to assist the oxidative refolding of denatured and reduced lysozyme. The assisted refolding yields obtained with immobilized folding biocatalysts were at least twice of those obtained in the spontaneous refolding, suggesting that the AD, DsbA, and DsbC immobilized in cellulose might be useful for the oxidative refolding of recombinant proteins that are expressed as inclusion bodies. In addition, the spontaneous or assisted refolding kinetics data fitted well (r2 > 0.9) to a previously reported lysozyme refolding model. The estimated refolding (k N) and aggregation (k A) constants were consistent with the hypothesis that foldases assisted the oxidative refolding of lysozyme by decreasing protein aggregation rather than increasing the refolding rate.  相似文献   

17.
18.
Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC50 ∼2 × 10−12 M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance.  相似文献   

19.
TGF-alpha-PE40 is a hybrid protein composed of transforming growth factor-alpha (TGF-alpha) fused to a 40,000-dalton segment of Pseudomonas exotoxin A (PE40). This hybrid protein possesses the receptor-binding activity of TGF-alpha and the cell-killing properties of PE40. These properties enable TGF-alpha-PE40 to bind to and kill tumor cells that possess epidermal growth factor (EGF) receptors. Unexpectedly, TGF-alpha-PE40 binds approximately 100-fold less effectively to EGF receptors than does native TGF-alpha (receptor-binding inhibition IC50 = 540 and 5.5 nM, respectively). To understand the factors governing receptor binding, deletions and site-specific substitutions were introduced into the PE40 domain of TGF-alpha-PE40. Removal of the N-terminal 59 or 130 amino acids from the PE40 domain of TGF-alpha-PE40 improved receptor binding (IC50 = 340 and 180 nM, respectively) but decreased cell-killing activity. Substitution of alanines for cysteines at positions 265 and 287 within the PE40 domain dramatically improved receptor binding (IC50 = 37 nM) but also decreased cell-killing activity. Similar substitutions of alanines for cysteines at positions 372 and 379 within the PE40 domain did not significantly affect receptor-binding or cell-killing activities. These studies indicate that the PE40 domain of TGF-alpha-PE40 interferes with EGF receptor binding. The cysteine residues at positions 265 and 287 of PE40 are responsible for a major part of this interference.  相似文献   

20.
A novel expression vector pTugA, previously constructed in our laboratory, was modified to provide kanamycin resistance (pTugK) and used to direct the synthesis of polypeptides as fusions with the C- or N-terminus of a cellulose binding domain which serves as the affinity tag in a novel secretion-affinity fusion system. Fed-batch fermentation strategies were applied to production in recombinant E. coli TOPP5 of the cellulose binding domain (CBD) from the Cellulomonas fimi cellulase Cex. The pTugK expression vector, which codes for the Cex leader sequence that directs the recombinant protein to the periplasm of E. coli, was shown to remain stable at very high-cell densities. Recombinant cell densities in excess of 90 g (dry cell weight)/L were achieved using media and feed solutions optimized using a 2(n) factorial design. Optimization of inducer (isophenyl-thio-beta-D-galactopyranoside) concentration and the time of induction led to soluble, fully active CBD(Cex) production levels in excess of 8 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号