首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of biologically active proteins is of great importance to research and industry. Cellulose is an attractive matrix and cellulose-binding domain (CBD) an excellent affinity tag protein for the purification and immobilization of many of these proteins. We constructed two vectors to enable the cloning and expression of proteins fused to the N- or C-terminus of CBD. Their usefulness was demonstrated by fusing the heparin-degrading protein heparinase I to CBD (CBD-HepI and HepI-CBD). The fusion proteins were over-expressed in Escherichia coli under the control of a T7 promoter and found to accumulate in inclusion bodies. The inclusion bodies were recovered by centrifugation, the proteins were refolded and recovered on a cellulose column. The bifunctional fusion protein retained its abilities to bind to cellulose and degrade heparin. C-terminal fusion of heparinase I to CBD was somewhat superior to N-terminal fusion: Although specific activities in solution were comparable, the latter exhibited impaired binding capacity to cellulose. CBD-HepI-cellulose bioreactor was operated continuously and degraded heparin for over 40 h without any significant loss of activity. By varying the flow rate, the mean molecular weight of the heparin oligosaccharide produced could be controlled. The molecular weight distribution profiles, obtained from heparin depolymerization by free heparinase I, free CBD-HepI, and cellulose-immobilized CBD-HepI, were compared. The profiles obtained by free heparinase I and CBD-HepI were indistinguishable, however, immobilized CBD-HepI produced much lower molecular weight fragments at the same percentage of depolymerization. Thus, CBD can be used for the efficient production of bioreactors, combining purification and immobilization into essentially a single step.  相似文献   

2.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

3.
Zhang Z  Song LP  Fang M  Wang F  He D  Zhao R  Liu J  Zhou ZY  Yin CC  Lin Q  Huang HL 《BioTechniques》2003,35(5):1032-8, 1041-2
Overproduction of genetically engineered antibodies, such as single-chain antibodies (scAbs) in Escherichia coli often results in insoluble and inactive products known as inclusion bodies. We now report that fusion or co-expression of FkpA, the E. coli periplasmic peptidyl-prolyl-isomerase with chaperone activity, substantially improves soluble and functional expression of scAbs. Anti-human bladder carcinoma scAb (PG) and anti-human CD3 x anti-human ovarian carcinoma-bispecific scAb (BH1) were fused with FkpA on the pTMF-based plasmid and expressed in E. coli. More than half of the amount of each expressed fusion protein FkpA-PG or FkpA-BH1 was soluble. In addition, the fusion protein cellulose-binding domain from Cellulomonas fimi (CBD)-PG and anti-human CD3 x anti-human CD28 x anti-human ovarian carcinoma-trispecific scAb (TRI) fused to the pelB (a signal peptide from pectate lysase B of a Bacillus sp.) signal sequence were co-expressed with FkpA under the control of the T7 promoter. A substantial portion of the co-expressed CBD-PG or TRI was soluble. Furthermore, PG, BH1, and TRI were biologically active as judged by ELISA and in vitro cytotoxicity assay. These results suggest that overexpression of FkpA should be useful in expressing heterologous proteins in E. coli.  相似文献   

4.
Preparation of recombinant RNase single-chain antibody fusion proteins   总被引:4,自引:0,他引:4  
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.  相似文献   

5.
Different chimeric proteins combining the non-catalytic C-terminal putative cellulose binding domain of Clostridium cellulovorans endoglucanase-xylanase D (EngD) with its proline-threonine rich region PT-linker, PTCBD(EngD), cellulose binding domain of C. cellulovorans cellulose binding protein A, CBD(CbpA), cohesin domains Cip7, Coh6 and CipC1 from different clostridial species and recombinant antibody binding protein LG were constructed, expressed, purified and analyzed. The solubilities of chimeric proteins containing highly soluble domains Cip7, CipC1 and LG were not affected by fusion with PTCBD(EngD). Insoluble domain Coh6 was solubilized when fused with PTCBD(EngD). In contrast, fusion with CBD(CbpA) resulted in only a slight increase in solubility of Coh6 and even decreased solubility of CipC1 greatly. PTCBD(EngD) and Cip7-PTCBD(EngD) were shown to bind regenerated commercial amorphous cellulose Cuprophan. The purity of Cip7-PTCBD(EngD) eluted from Cuprophan was comparable to that purified by conventional ion exchange chromatography. The results demonstrated that PTCBD(EngD) can serve as a bi-functional fusion tag for solubilization of fusion partners and as a domain for the immobilization, enrichment and purification of molecules or cells on regenerated amorphous cellulose.  相似文献   

6.
7.
The glycoprotein B (gB) of human cytomegalovirus represents a dominant antigen for the humoral immune response. The immunodominant region on gB is the antigenic domain 1 (AD-1), a complex structure that requires a minimal continuous sequence of more than 75 amino acids for antibody binding. In this study, this domain was expressed in Escherichia coli as a fusion protein with β-galactosidase but yielded insoluble protein aggregates as inclusion bodies. To recover the fusion protein, inclusion bodies were solubilized by two extractions with urea 8 m and the fusion protein then isolated using gel filtration chromatography. After confirmation of fusion protein antigenicity by Western blotting, the purified product was used as the capturing antigen in an enzyme-linked immunosorbent assay (ELISA) to determine the presence of viral antibodies in serum samples of pregnant women. A cut-off point of approximately 0.2 absorbance units could discriminate the results of seropositive from seronegative pregnant women. The data indicates the potential usefulness of the fusion protein for the development of immunoassay for detection of the HCMV antibodies. Received 22 September 2005; Revisions requested 10 October 2005; Revisions received 26 October 2005; Accepted 31 October 2005  相似文献   

8.
A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was expressed in Escherichia coli. The renatured GST-CBD recovered from inclusion bodies had a molecular mass of 36.5 kDa which agrees with the 29 kDa of the GST plus the calculated 7.5 kDa of the linker with the CBD. The isolated GST-CBD protein adsorbed to both bacterial microcrystalline cellulose and carboxymethyl cellulose. Deletion of the linker peptide caused a decrease in cellulose adsorbance and a higher sensitivity to protease digestion.  相似文献   

9.
Bacterially expressed recombinant proteins are widely used for producing specific antibodies. Unfortunately, many recombinant proteins are recovered as insoluble materials, so-called inclusion bodies. Inclusion bodies are rather advantageous from a point of view of immunogens because fairly pure proteins can be feasibly extracted from the inclusion bodies. However, we encounter a problem with an insoluble protein when we make an antigen-immobilized column for affinity purification of antibodies because we need a soluble protein in usual immobilization methods. Histidine-tagged proteins can be bound to Ni(2+)-resins in buffer containing 6M guanidine-HCl, in which most insoluble proteins are solubilized. Taking advantage of this feature, we have successfully purified antigen-specific antibodies by directly using Ni(2+)-resins onto which denatured proteins are bound.  相似文献   

10.
11.
Insoluble protein particles showing high specific enzyme activity are potentially useful biocatalysts. The commercialized crosslinked enzyme crystals and aggregates have the disadvantage that their preparation requires isolation of the protein before the critical precipitation step. We introduce a novel concept of controlled precipitation in vivo in which the target enzyme is fused to the cellulose-binding domain (CBD) of Clostridium cellulovorans, and expression in Escherichia coli is performed under conditions that induce selective pull down of the folded chimeric protein via intermolecular self-aggregation of the CBD. The case of D-amino acid oxidase from Trigonopsis variabilis shows that upon fusion of the CBD to its N-terminus, the otherwise mainly soluble recombinant enzyme was quantitatively precipitated in protein particles, which displayed 40% of the specific activity of the highly purified oxidase. By contrast, inclusion bodies derived from an enzyme chimera, which harbored a C-terminal peptide tag, showed only little oxidase activity (相似文献   

12.
A putative rice trypsin/chymotrypsin inhibitor of the Bowman-Birk family, RBBI-8 of about 20 kDa, was expressed in Escherichia coli as a fusion protein bearing an N-terminal (His)6 purification tag. The expressed recombinant protein, rRBBI-8, is insoluble and accumulates as inclusion bodies. The insoluble protein was solubilized in 8 M urea under reducing environment and then refolded into its active conformation under optimized redox conditions. Strategies used to optimize yield and efficiency include selecting the redox system, increasing protein concentration during refolding by adding the denatured protein in a stepwise way, utilizing additives to prevent aggregation, and selecting buffer-exchanging conditions. A Ni-chelate affinity column was then employed to purify the renatured protein. rRBBI-8 shows strong inhibitory activity against trypsin and it can slightly inhibit chymotrypsin. In this study, a refolding and purification system was set up for this cysteine-rich recombinant protein expressed in a prokaryotic system.  相似文献   

13.
Aims: Immobilization of whole cells can be used to accumulate cells in a bioreactor and thus increase the cell density and potentially productivity, also. Cellulose is an excellent matrix for immobilization purposes because it does not require chemical modifications and is commercially available in many different forms at low price. The aim of this study was to construct a Lactococcus lactis strain capable of immobilizing to a cellulosic matrix. Methods and Results: In this study, the Usp45 signal sequence fused with the cellulose‐binding domain (CBD) (112 amino acids) of XylA enzyme from Cellvibrio japonicus was fused with PrtP or AcmA anchors derived from L. lactis. A successful surface display of L. lactis cells expressing these fusion proteins under the P45 promoter was achieved and detected by whole‐cell ELISA. A rapid filter paper assay was developed to study the cellulose‐binding capability of these recombinant strains. As a result, an efficient immobilization to filter paper was demonstrated for the L. lactis cells expressing the CBD‐fusion protein. The highest immobilization (92%) was measured for the strain expressing the CBD in fusion with the 344 amino acid PrtP anchor. Conclusions: The result from the binding tests indicated that a new phenotype for L. lactis with cellulose‐binding capability was achieved with both PrtP (LPXTG type anchor) and AcmA (LysM type anchor) fusions with CBD. Significance and Impact of the Study: We demonstrated that an efficient immobilization of recombinant L. lactis cells to cellulosic matrix is possible. This is a step forward in developing efficient immobilization systems for lactococcal strains for industrial‐scale fermentations.  相似文献   

14.
The gene of ScFv-CBD-fusion protein has been designed using the DNA sequences encoding of single-chain antibody (ScFv) against human interferon alpha2b (IFN-alpha2b) and cellulose-binding domain (CBD) from Clostridium thermocellum cellulosome. Biosynthesis of ScFv-CBD utilizing high-productive Escherichia coli system was carried out and the accumulation of target protein in bacterial inclusion bodies was shown. After the purification of the inclusion bodies and their subsequent in vitro refolding the soluble ScFv-CBD-fusion protein was directly immobilized on cellulose by bioaffinity coupling. The possibility to obtain the preparative quantities of ScFv-CBD in biologically-active form using different refolding schemes was accurately investigated in the paper. The general applicability of biologically immobilized ScFv-CBD-fusion proteins for affinity purification of recombinant IFN-alpha2b is shown.  相似文献   

15.
An active form of a single-chain antibody fragment (scFv) from the murine monoclonal antibody ABL-1, which is specific for B-cell-activating factor of the TNF family, was produced in Escherichia coli. The complementary DNAs encoding the variable regions of the heavy chain (VH) and light chain (VL) were connected by a (Gly4Ser)3 linker, using an assembly polymerase chain reaction. The construct VH-linker-VL was placed under the control of highly efficient T7 promoter system. The cloned scFv was expressed in E. coli BL21(DE3) as inclusion bodies. After extraction from the E. coli cells, the inclusion bodies were solubilized and denatured in the presence of 8M urea. The expressed scFv fusion proteins were purified by Ni(2+)-IDA His-bind resin and finally renatured by dialysis. The purity and activity of the purified scFv were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and enzyme-linked immunosorbent assay. The result revealed that the ABL-1 scFv retains the specific binding activity to BAFF with an affinity constant of 0.9x10(-8)molL(-1).  相似文献   

16.
A tandem repeat of the family VI cellulose binding domain (CBD) from Clostridium stercorarium xylanase (XylA) was fused at the carboxyl-terminus of Bacillus halodurans xylanase (XylA). B. halodurans XylA is an enzyme which is active in the alkaline region of pH and lacks a CBD. The constructed chimera was expressed in Escherichia coli, purified to homogeneity, and then subjected to detailed characterization. The chimeric enzyme displayed pH activity and stability profiles similar to those of the parental enzyme. The optimal temperature of the chimera was observed at 60 °C and the enzyme was stable up to 50 °C. Binding studies with insoluble polysaccharides indicated that the chimera had acquired an increased affinity for oat spelt xylan and acid-swollen cellulose. The bound chimeric enzyme was desorbed from insoluble substrates with sugars and soluble polysaccharides, indicating that the CBDs also possess an affinity for soluble sugars. Overall, the chimera displayed a higher level of hydrolytic activity toward insoluble oat spelt xylan than its parental enzyme and a similar level of activity toward soluble xylan.  相似文献   

17.
利用内蛋白子剪切功能一步纯化重组人神经营养因子-3   总被引:3,自引:0,他引:3  
将人神经营养因子 - 3(h NT3)基因插入含内蛋白子 -几丁质结合区 (Intein- CBD)片段的质粒p TXB1的多克隆位点 ,构建成重组子 p TXB- h NT3,随后转化入 E.coli 2 566并进行融合表达 .表达产物包涵体经 8mol/ L脲变性 ,并在 GSH,GSSG存在下复性 .复性后的融合蛋白经几丁质珠亲和柱吸附 .待洗涤杂蛋白后 ,加入 50 mmol/ L DTT在 4℃或 2 5℃进行剪切反应 48h,再用缓冲液洗脱 ,即得 h NT3.SDS- PAGE分析表明 ,h NT3达电泳纯 .其分子量约为 1 4 k D  相似文献   

18.
An open reading frame of gelonin (Gel), one of ribosome inactivating proteins, was inserted into the vector pBSL-C which contains the coding region of chitin binding domain (CBD)-intein, resulting in the fusion expression of CBD-intein-Gel in Escherichia coli BL21 (DE3) by the induction of IPTG. The fusion product formed an aggregate of the misfolded protein, commonly referred to as inclusion bodies (IBs). The IBs were denatured and then refolded by step-wise dialysis. About 69% fusion protein was in vitro refolded to native state in the presence of GSSG and GSH as monitored by size-exclusion HPLC. The refolded CBD-intein-Gel was loaded onto chitin beads column equilibrated with 10 mM Tris buffer, 500 mM NaCl, pH 8.5, and about 2.4 mgGel/L culture with 96% homogeneity was directly eluted from the captured column by incubation at 25 degrees C under pH 6.5 for 48 h based on intein C-terminal self-cleavage. Western blot, ELISA, and in vitro inhibition of protein synthesis demonstrated that the bioactivity of recombinant Gel was comparable to that of native Gel purified from seeds. This implied that the purified Gel by this method is biologically active and suitable for further studies.  相似文献   

19.
The sequence Arg-Gly-Asp (RGD) in extracellular matrix proteins such as fibronectin, collagen, and laminin mediates cell attachment by interacting with proteins of the integrin family of cell surface receptors. A gene fusion encoding the RGD-containing peptide, fused to the C-terminus of a cellulose-binding domain (CBD/RGD), was expressed in Escherichia coli. Cultures produced up to 50 mg of CBD/RGD per liter, most of which was extracellular. It was purified from the culture supernatant by affinity chromatography on cellulose. CBD/RGD promoted the attachment of green monkey Vero cells to polystyrene and cellulose acetate. Attachment was inhibited by small synthetic peptides containing the RGD sequence. CBD/RGD was as effective as collagen in promoting the attachment of Vero cells to Cellsnowtrade mark microcarriers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号