首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

2.
The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures was examined, using on-line off-gas analyses to measure the oxygen and carbon dioxide consumption rates continuously. A cell suspension from continuous cultures at steady state was used as the inoculum. It was observed that a dynamic phase occurred in the initial phase of the experiment. In this phase the bacterial ferrous iron oxidation and growth were uncoupled. After about 16 h the bacteria were adapted and achieved a pseudo-steady state, in which the specific growth rate and oxygen consumption rate were coupled and their relationship was described by the Pirt equation. In pseudo-steady state, the growth and oxidation kinetics were accurately described by the rate equation for competitive product inhibition. Bacterial substrate consumption is regarded as the primary process, which is described by the equation for competitive product inhibition. Subsequently the kinetic equation for the specific growth rate, μ, is derived by applying the Pirt equation for bacterial substrate consumption and growth. The maximum specific growth rate, μ max, measured in the batch culture agrees with the dilution rate at which washout occurs in continuous cultures. The maximum oxygen consumption rate, q O2,max, of the cell suspension in the batch culture was determined by respiration measurements in a biological oxygen monitor at excess ferrous iron, and showed changes of up to 20% during the course of the experiment. The kinetic constants determined in the batch culture slightly differ from those in continuous cultures, such that, at equal ferric to ferrous iron concentration ratios, biomass-specific rates are up to 1.3 times higher in continuous cultures. Received: 8 February 1999 / Accepted: 17 February 1999  相似文献   

3.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

4.
Candida utiilis NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h−1 to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of 0.662 ± 0.002 gx/gcarb was obtained at a dilution rate of 0.4 h−1. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod kinetics. At maximum specific growth rate (μmax) 0.65 h−1, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 gcarb/1, 0.046 ± 0.003 grs/1, and 1.036 ± 0.001 gCOD/1, respectively. Maximum biomass productivity (Q x max) 2.8 ± 0.03 gx/1 h was obtained at a dilution rate of 0.5 h−1. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h−1, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h−1, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 gp/1 h, and 84.2 ± 0.42%, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H14CO3 incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h–1, equivalent to 1/2 max. The affinity of the pyruvate carboxylase for bicarbonate was twice that of the PEP carboxylase under the conditons of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO 3 concentration over the range 0.7–2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.  相似文献   

6.
A pH-stat fermentor is a continuous cultivator in which the feed rate is controlled to maintain a constant pH, i.e., end-product acid concentration. This fermentor has application to the continuous cultivation of lactic acid-producing organisms in milk-based media. The equations describing the operation of this fermentor are developed. It is shown that, where the limiting substrate is the carbon and energy source, the operation of the fermentor is essentially equivalent to that of a turbidostat. In contrast to this, where the carbon and energy source is in excess and growth is limited by another substrate, pH-state fermentation is stable both in regions of substrate excess, where D = μmax, comparable with turbidostat operation, and substrate limitation where D < μmax, comparable with chemostat operation. These conditions are met in milk-based media. An analysis is presented, allowing the prediction of the degree of substrate limitation, cell density, and dilution rate in a pH-stat fermentor from batch-growth kinetics. This was confirmed using experimental data for the growth of Streptococcus thermophilus TS2 and Lactobacillus LB1 in skim milk. Stable simultaneous growth of two organisms in continuous culture occurs if their growth rates are determined by separate conditions, so that, at steady state, their growth rqtes are separately madeequal to the dilution rate. It is then predicted, and confirmed by experiment, that a mixed culture of S. thermophilus TS2 and L. bulgaricus LB1 in a pH-stat continuous fermentor in yogurt mix at pH 5.5 would be stable with the growth of L. bulgaricus being substrate unlimited and the fermentor operting with D = μmax for L. bulgaricus LB1, and the growth of S. thermophilus TS2 being substrate limited so that its growth rate is equal to the existing dilution rate. Finally, it is predicted and confirmed by experiment that if the conditions are altered so that the growth of S. thermophilus TS2 is substrate unlimited the stable association is broken down, the fermentor operates with D approaching μmax for S. thermophilus TS2, and L. bulgaricus LB1 is washed out to the level maintained by wall growth.  相似文献   

7.
The maximum specific growth rate (μmax) of an ethanolic D-xylose-fermenting yeast, Pichia stipitis, showing non-linear growth trends in batch culture, was calculated using the rate equation μ2 = (1/Δt) ln(x 2/x 1). The absolute error Δμ, affecting μ2, was derived using an equation given by Borzani (1994). Based on the assumption of linearity of growth curves between two closest time points, the relation between the two rate formulae, μ1 = (1/)dx t /dt and μ2 = (1/Δt) ln(x 2/x 1) was established. In a particular condition, when μ1 = μ2, an equation has been developed, the roots of which are the specific growth rates at different time points. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

9.
Acinetobacter calcoaceticus induced competence for natural transformation maximally after dilution of a stationary culture into fresh medium. Competence was gradually lost during prolonged exponential growth and after entrance into the stationary state. Growth cessation and nutrient upshift were involved in the induction of competence. The level of competence of a chemostat culture of A. calcoaceticus was dependent on the nature of the growth limitation. Under potassium limitation a transformation frequency of ±1x10-4 was obtained. This frequency was independent of the specific growth rate. In phosphate-, nitrogen-, and carbon-limited chemostat cultures, in contrast, the transformation frequency depended on the specific growth rate; the transformation frequency equalled±10-4 at dilution rates close to µmax of 0.6h-1 and decreased to ±10-7 at a dilution rate of 0.1 h-1. We conclude that (1) DNA uptake for natural transformation in A. calcoaceticus does not serve a nutrient function and (2) competence induction is regulated via a promoter(s) that resembles the fis promoter from Escherichia coli.  相似文献   

10.
Leaf carbon gain simulation was performed forQuercus serrata seedlings with previously reported 6 day photosynthetic photon flux density (PPFD) histograms from 20 understorey microsites of a pine forest (Washitani & Tang 1991). This simulation was performed with or without an assumption of the acclimatization of photosynthetic capacity (Pmax) to microsite light availability. A constant ratio of respiration rate to Pmax, within, the range of 0.07–0.1, was assumed as a constraint. In relatively well illuminated microsites with a diffuse site factor above 0.1, predicted optimal Pmax was about 5 μmol m−2 s−1, with the predicted mean daily net carbon gain being about 50 mmol m−2 day−1. Each of the predicted optimal Pmax and the simulated mean daily net carbon gains with a constant Pmax (5 μmol m−2 s−1) or the predicted optimal Pmax was linearly related to the microsite light availability index, diffuse site factor. Simulated net carbon gain was negative at diffuse site factors below 0.04, if the constant of Pmax was assumed. The predicted linear relationship between net carbon gain and diffuse site factor could provide an ecophysiological basis for the observed linear dependency of the relative growth rate of biomass ofQ. serrata seedlings on the microsite diffuse site factor (Washitani & Tang 1991).  相似文献   

11.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

12.
Anabaena sp., isolated from a rice paddy, was investigated for its nitrogen fixation as measured by acetylene reduction activity (ARA) in P-limited continuous and light-limited semi-continuous cultures. Growth rate (μ) under P limitation was a function of cell P content (q p). Both the photosynthetic capacity (Pmax) and photosynthetic efficiency (α) increased with μ when expressed per cell, but not per unit chla. The ARA of steady-state cells under P limitation increased with μ and was linearly related to C-fixation rate. This was apparently a consequence of the control of C-fixation by P limitation. In light-limited cells, steady state ARA, both at the culture light intensity and in the dark, increased asymptotically with μ, but the activity in the dark was only about 51% of that in the light. When the light level of steady-state cells grown at a high in intensity was switched to a low level, ARA decreased exponentially with time. Dark ARA activity also showed a similar decline, but at much lower levels. Thus, ARA depended not only on light history, but also immediate photosynthesis. Steady-state ARA at the ambient intensity or in the dark showed a strong correlation with14C-fixation rate. ARA of light-limited cells showed the same light-saturation characteristics as their14C-fixation, with the same initial saturation intensity,I k. The ratios of Pmax to the maximum ARA (ARAmax), and α to the slope of ARA (αara) were identical. A comparison of gross to net photosynthesis and N2 fixation suggested that there was little leakage or excretion of fixed C or N.  相似文献   

13.
The effect of changing growth rate and oxygen transfer rate (OTR) on Debaryomyces hansenii physiology was studied using xylose-limited and oxygen-limited chemostat cultures, respectively, and complemented with enzymatic assays. Under xylose-limited chemostat (oxygen-excess), neither ethanol nor xylitol was produced over the entire range of dilution rate (D). The maximal volumetric biomass productivity was 2.5 g l–1 h–1 at D =0.25 h–1 and cell yield was constant at all values of D. The respiratory rates and xylose consumption rate increased linearly with growth rate but, above 0.17 h–1, oxygen consumption rate had a steeper increase compared to carbon dioxide production rate. Enzymatic analysis of xylose metabolism suggests that internal fluxes are redirected as a function of growth rate. For values of D up to 0.17 h–1, the xylose reductase (XR) titre is lower than the xylitol dehydrogenase (XDH) titre, whereas above 0.17 h–1 XR activity is about twice that of XDH and the NADPH-producing enzymes sharply increase their titres indicating an internal metabolic flux shift to meet higher NADPH metabolic requirements. Moreover, the enzymes around the pyruvate node also exhibited different patterns if D was above or below 0.17 h–1. Under oxygen-limited chemostat (xylose-excess) the metabolism changed drastically and, due to oxidative phosphorylation limitation, cell yield decreased to 0.16 g g–1 for an OTR of 1.4 mmol l–1 h–1 and xylitol became the major extracellular product along with minor amounts of glycerol. The enzymatic analysis revealed that isocitrate dehydrogenase is not regulated by oxygen, whereas XR, XDH and the NADPH-producing enzymes changed their levels according to oxygen availability. Electronic Publication  相似文献   

14.
The molar growth yield (Y m) of Bacteroides amylophilus strain WP91 on maltose was 68±2 g/mol when determined from batch cultures at the peaks of maximal growth. Continued incubation led to considerable cell lysis. When calculated from batch cultures in exponential phase (specific growth rate, =0.57 h-1) Y m was 101 g/mol. The maximum value of Y m in maltose-limited chemostat cultures at the maximum dilution rate (D) attainable (D==0.39 h-1) was about 79 g/mol. Ammonia-Fmited chemostat cultures metabolized maltose with a much reduced efficiency and this was associated with a difference in morphology and chemical composition of the cells. The theoretical maximum molar growth yields (Y m max ) were 55 and 114 g/mol for ammonia- and maltose-limited growth respectively. However, if account was taken of extracellular nitrogen-containing material in ammonia-limited cultures, Y m max became 60. The maintenance coefficient (m s), estimated from the lines relating the specific rate of maltose consumption (q m) and D (where m s=q m at D=0), was 7.4±0.6×10-4 mol maltose/g x h for both nutrient limitations. A difference in maintenance energy demand, independent of growth-rate, could not account, therefore, for the observed differences in Y m between ammonia- and maltose-limited growth.  相似文献   

15.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

16.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

17.
The oxidation of catechol, an intermediate in benzene catabolism, was studied using transient variations in dissolved oxygen tension (DOT) when a succinate limited steady state culture of Pseudomonas putida ML2 was perturbed with a pulse of another substrate. A model was developed and tested for the effect of fluctuations in oxidizing enzyme activity on DOT. It was found that the rate of induction of catechol oxidizing enzymes was independent of dilution rate up to a relative growth rate /max of 0.75. Only at higher dilution rates was catabolite repression observed.Abbreviations DOT dissolved oxygen tension - K L a gas transfer coefficient - specific growth rate - max maximum specific growth rate - Ks substrate saturation constant  相似文献   

18.
 A bacterium classified as Rhodococcus opacus, which is able to use pyridine (a potentially growth-inhibiting substrate) as its sole source of carbon, energy and nitrogen, was isolated. In a carbon-limited chemostat culture, the kinetics was determined for growth on both pyridine and a mixture of pyridine and fructose (9 mM/22.15 mM). With growth on pyridine, stable steady states were achieved up to dilution rates of about 0.1 h-1. A further increase in the dilution rate resulted in the progressive accumulation of pyridine in the culture liquid and the cells were washed out. The maximum specific growth rate (μmax = 0.23 h-1) and the K S value (0.22 mM) for growth on pyridine were determined from the residual pyridine concentrations measured within the range of stable steady states. With growth on the substrate mixture, the specific pyridine consumption rates and the residual pyridine concentrations were lower at similar dilution rates than with growth on pyridine alone, and stable steady states were established at dilution rates of up to 0.13 h-1. The maximum pyridine degradation rate was enhanced to 270 mg pyridine l-1 h-1 compared to 210 mg pyridine l-1 h-1with growth on pyridine as a single substrate. An external nitrogen source did not need to be added in the case of growth on the substrate mixture. Fructose was assimilated by means of ammonium released from pyridine. Analysis of the nitrogen balance furnished proof that pyridine is an energy-deficient substrate; pyridine was assimilated and dissimilated at a ratio of 1 mol/0.67 mol respectively. The resulting yield coefficient was about 0.55 g dry weight/g pyridine. Moreover, it was demonstrated that, in regard to the biologically usable energy, 1 mol pyridine corresponds to 0.43 mol fructose. Received: 3 July 1995/Received revision: 19 October 1995/Accepted: 24 October 1995  相似文献   

19.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

20.
Biodegradation of BTEX by a microbial consortium isolated from a closed municipal landfill was studied using respirometric techniques. The kinetics of biodegradation were estimated from experimental oxygen uptake data using a nonlinear parameter estimation technique. All of the six compounds were rapidly degraded by the microbial culture and no substrate inhibition was observed at the concentration levels examined (200 mg L−1 as COD). Microbial growth and contaminant degradation were adequately described by the Monod equation. Considerable differences were observed in the rates of BTEX biodegradation as seen from the estimates of the kinetic parameters. A three-fold variation was seen in the values of the maximum specific growth rate, μmax. The highest value of μmax was 0.389 h−1 for p-xylene while o-xylene was characterized by a μmax value of 0.14 h−1, the lowest observed in this study. The half saturation coefficient, K s, and the yield coefficient, Y, varied between 1.288–4.681 mg L−1 and 0.272–0.645 mg mg−1, respectively. Benzene and o-xylene exhibited higher resistance to biodegradation while toluene and p-xylene were rapidly degraded. Ethylbenzene and m-xylene were degraded at intermediate rates. In biodegradation experiments with a multiple substrate matrix, substrate depletion was slower than in single substrate experiments, suggesting an inhibitory nature of substrate interaction. Received 15 February 1998/ Accepted in revised form 5 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号