首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein Barr virus (EBV) and herpesvirus papio (HVPapio) DNAs share a common format and 40% homology. Labeled cloned fragments of EBV DNA were hybridized to blots of XbaI, EcoRI, HindIII, and SalI fragments of HVPapio DNA. EBV fragments which mapped from 2 x 10(6) to 54 x 10(6) and from 59 x 10(6) to 106 x 10(6) daltons hybridized to fragments at identical map positions in HVPapio DNA. Regions of nonhomology were demonstrated at 0 x 10(6) to 2 x 10(6), 54 x 10(6) to 59 10(6), and 106 x 10(6) to 115 x 10(6) daltons.  相似文献   

2.
One common attribute of herpesviruses is the ability to establish latent, life-long infections. The role of virus-virus interaction in viral reactivation between or among herpesviruses has not been studied. Preliminary experiments in our laboratory had indicated that infection of Epstein-Barr virus (EBV) genome-positive human lymphoid cell lines with human herpesvirus 6 (HHV-6) results in EBV reactivation in these cells. To further our knowledge of this complex phenomenon, we investigated the effect of HHV-6 infection on expression of the viral lytic cycle proteins of EBV. Our results indicate that HHV-6 upregulates, by up to 10-fold, expression of the immediate-early Zebra antigen and the diffuse and restricted (85 kDa) early antigens (EA-D and EA-R, respectively) in both EBV producer and nonproducer cell lines (i.e., P3HR1, Akata, and Raji). Maximal EA-D induction was observed at 72 h post-HHV-6 infection. Furthermore, expression of late EBV gene products, namely, the viral capsid antigen (125 kDa) and viral membrane glycoprotein gp350, was also increased in EBV producer cells (P3HR1 and Akata) following infection by HHV-6. By using dual-color membrane immunofluorescence, it was found that most of the cells expressing viral membrane glycoprotein gp350 were also positive for HHV-6 antigens, suggesting a direct effect of HHV-6 replication on induction of the EBV replicative cycle. No expression of late EBV antigens was observed in Raji cells following infection by HHV-6, implying a lack of functional complementation between the deleted form of EBV found in Raji cells and the superinfecting HHV-6. The susceptibility of the cell lines to infection by HHV-6 correlated with increased expression of various EBV proteins in that B95-8 cells, which are not susceptible to HHV-6 infection, did not show an increase in expression of EBV antigens following treatment with HHV-6. Moreover, UV light-irradiated or heat-inactivated HHV-6 had no upregulating effect on the Zebra antigen or EA-D in Raji cells, indicating that infectious virus is required for the observed effects of HHV-6 on these EBV products. These results show that HHV-6, another lymphotropic human herpesvirus, can activate EBV replication and may thus contribute to the pathogenesis of EBV-associated diseases.  相似文献   

3.
By using amino acid sequence patterns (motifs) diagnostic of conserved regions within the catalytic domains of protein kinases, homologous open reading frames of three herpesviruses were identified as protein kinase-related genes. The three sequences, herpes simplex virus gene UL13, varicella-zoster virus gene 47, and Epstein-Barr virus gene BGLF4, resemble serine/threonine kinases rather than tyrosine kinases.  相似文献   

4.
5.
6.
7.
M Heller  P Gerber    E Kieff 《Journal of virology》1981,37(2):698-709
EcoRI, HindII, SalI, nd XbaI restriction endonuclease maps of herpesvirus papio (HVPapio) DNA were derived by determining the fragment sizes and the linkage relationships between fragments generated by the different enzymes. The data indicate that HVPapio DNA has a single molecular arrangement which is similar to that of Epstein-Barr virus DNA. The size of the DNA was 110 X 10(6) to 114 X 10(6) daltons. Restriction fragments from both ends varied in the number of repeats of a 4 X 10(5)-dalton sequence, TR, and hybridized to each other. This suggests that there is an identical repeating unit, TR, at both ends of the DNA. There were usually six tandem repetitions (range, 1 to 11) of a 2 X 10(6)-dalton sequence, IR, within the DNA. IR separated the DNA into two domains of largely unique sequence complexity, a 9 X 10(6)-dalton segment, Us, and an 88 X 10(6)-dalton segment, UL. There was homology between DNA fragments which mapped at 25 X 10(6) to 29 X 10(6) to 91 X 10(6) to 95 X 10(6) daltons in UL.  相似文献   

8.
9.
S Wang  J M Vos 《Journal of virology》1996,70(12):8422-8430
We have developed a miniviral vector, pH300, based on the human herpesviruses 1 and 4, herpes simplex virus type 1 (HSV-1), and Epstein-Barr virus (EBV), carrying EBV sequences for plasmid episomal maintenance and HSV-1 sequences for amplification and packaging in multimeric form into HSV-1 capsids in the presence of a helper virus and helper cell line. A reporter gene, the bacterial lacZ gene, which expressed beta-galactosidase, was inserted into the multiple cloning site of pH300 to make pH300-lac. The packaged pH300-lac DNA was very efficient in infecting human cells in tissue culture. The pH300-lac miniviral stock was used to infect in vitro various human cell types derived from breast cancer, lung cancer, and liver cancer. Up to 95% of cells were infected and expressed beta-galactosidase activity after exposure to viral stock at a multiplicity of infection of 3. There was essentially no apparent cytotoxicity after infection of cultured cells in vitro. To test in vivo gene delivery, human liver tumor cells preimplanted subcutaneously in nude mice and injected in situ with pH300-lac showed high efficiency of ectopic gene expression. The pH300 miniviral vector is a simple and effective gene transfer system which shows potential for gene therapy of cancer and inherited diseases.  相似文献   

10.
11.
12.
It has been suggested that human herpesvirus 8 (HHV-8), also known as KSHV (Kaposi's sarcoma-associated human herpesvirus), might possess a promoting effect in the development and progression of monoclonal gammopathies. In this study, the presence of Epstein-Barr virus (EBV), human cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and human herpesvirus 8 (HHV-8) were tested in patients with multiple myeloma (MM) using both serologic and nucleic acid amplification techniques. The transient reactivation or continuous presence of EBV, CMV, HHV-6 and HHV-8 could be detected in, respectively, 36, eight, 13 and 29 of 69 MM patients; nine, one, four and six of 16 monoclonal gammopathy of unknown significance patients; and seven, four, zero and five of 10 Waldenstr?m's macroglobulinemia patients. The total number of MM patients was 95. HHV-8 PCR-positivity was significantly more frequent in the MM group than in the control group of patients with non-Hodgkin's lymphoma (NHL). However, serologic testing did not reveal significant differences between the two patient groups. The number of MM patients with concomitant herpesvirus infections as detected by PCR was as follows: 15 double, seven triple and two quadruple virus nucleic acid positive. In 13/95 MM patients, the simultaneous presence of acute EBV infection and HHV-8 PCR-positivity was detected compared with none of the control group (P=0.009). These results indicate that in addition to HHV-8, the transitional reactivation of EBV may also play a role in the pathogenesis of MM.  相似文献   

13.
14.
15.
16.
17.
18.
Sera from chickens naturally infected with Marek's disease herpesvirus (MDHV) form preciptin lines with at least two immunologically distinct soluble antigens designated MDHV-A and MDHV-B. Partial purification and characterization of the glycoprotein MDHV-A antigen was previously reported. MDHV-B was found predominantly in the sonically treated extracts of infected cells, in contrast to the predominantly extracellular MDHV-A. Analysis of these extracts from [14C]glucosamine-labeled cells by immunodiffusion with chicken anti MDHV-B serum negative for MDHV-A followed by autoradiography confirmed that MDHV-B was a common antigen between MDHV and herpesvirus of turkeys and revealed that it was also a glycoprotein. Because of their glycoprotein nature, both MDHV-A and MDHV-B bound to concanavalin A affinity chromatography columns and could then be eluted by alpha-methyl-D-mannoside and recovered for further analysis. Concanavalin A affinity chromatography was an excellent technique for initial purification of MDHV-A and MDHV-B, since approximately 5- and 15- fold purification, respectively, was achieved in a single simple step. MDHV-B was resistant to trypsin under conditions where MDHV-A was sensitive, but was similar to MDHV-A in resistance to pH 2.0 and to 1.0 or 2.0 M urea and 0.05% Brij 35. Partially purified MDHV-B was analyzed by sucrose gradient sedimentation, isoelectric focusing, and gel filtration on Sephadex G-200 in the presence of 1.0 or 2.0 M urea and 0.05% Brij 35 to purify the antigen and to determine its physical and chemical properties in comparison with those already reported for MDHV-A. MDHV-B had a much lower isoelectric point in pH 4,54, a higher sedimentation coefficient of 4.4S, and a greater molecular weight of 58,250. These data indicate that MDHV-B is physically distinct from MDHV-A antigen, although the size difference is not sufficient to allow for effective separation. In contrast, the isoelectric point difference of greater than 2 pH units makes isoelectric focusing an effective means of purifying the antigens free of one another. The four-step purification procedure achieved greater than 200-fold purification of MDHV-B. Immunization of rabbits with this highly purified antigen results in the preparation of antisera that appeared monospecific for MDHV-B in immunodiffusion.  相似文献   

19.
Marek's disease herpesvirus A antigen (MDHV-A) was identified as a 61,000- to 65,000-dalton glycoprotein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation from the culture medium of both [35S]methionine- and [14C]glucosamine-labeled infected cells by specific rabbit serum directed against MDHV-A. Rigorous identification was accomplished by selective blocking of this specific immunoprecipitation of the glycoprotein with purified MDHV-A that was isolated at its characteristic isoelectric point. These results identify and characterize MDHV-A in terms of the previously determined physical and chemical properties of the antigen. A molecule of similar size was immunoprecipitated from the culture medium of cells infected with herpesvirus of turkeys, extending previous observations about the identity of a potentially important common antigen shared by MDHV and the nonpathogenic vaccine virus, herpesvirus of turkeys.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号