首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Wang X  Wang H  Iliakis G  Wang Y 《Radiation research》2003,159(3):426-432
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.  相似文献   

2.
To investigate double strand break (DSB) repair and signaling in human glioma cells, we stably transfected human U87 (ATM(+), p53(+)) glioma cells with a plasmid having a single I-SceI site within an inactive green fluorescent protein (GFP) expression cassette, allowing for the detection of homologous recombination repair (HRR) by GFP expression. HRR and nonhomologous end joining (NHEJ) were also determined by PCR. DSB repair was first detected at 12 h postinfection with an adenovirus expressing I-SceI with repair reaching plateau levels between 24 and 48 h. Within this time frame, NHEJ predominated over HRR in the range of 3-50-fold. To assess the involvement of ATM in DSB repair, we first examined whether ATM was associated with the DSB. Chromatin immunoprecipitation showed that ATM was present at the site of the DSB as early as 18 h postinfection. In cells treated with caffeine, an inhibitor of ATM, HRR was reduced, whereas NHEJ was not. In support of this finding, GFP flow cytometry demonstrated that caffeine reduced HRR by 90% under conditions when ATM kinase activity was inhibited. Dominant-negative ATM expressed from adenovirus inhibited HRR by 45%, also having little to no effect on NHEJ. Furthermore, HRR was inhibited by caffeine in serum-starved cells arrested in G(0)/G(1), suggesting that ATM is also important for HRR outside of the S and G(2) cell cycle phases. Altogether, these results demonstrate that HRR contributes substantially to DSB repair in human glioma cells, and, importantly, ATM plays a critical role in regulating HRR but not NHEJ throughout the cell cycle.  相似文献   

3.
The controlling role of ATM in homologous recombinational repair of DNA damage   总被引:32,自引:0,他引:32  
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.  相似文献   

4.
In this work we report that the Saccharomyces cerevisiae RAD9, RAD24, RAD17, MEC1, MEC3 and RAD53 checkpoint genes are required for efficient non-homologous end joining (NHEJ). RAD9 and RAD24 function additionally in this process. Defective NHEJ in rad9Delta-rad24Delta, but not yku80Delta cells, is only partially rescued by imposing G1 or G2/M delays. Thus, checkpoint functions other than transient cell cycle delays may be required for normal levels of NHEJ. Epistasis analysis also indicated that YKU80 and RAD9/RAD24 function in the same pathway for repair of lesions caused by MMS and gamma-irradiation. Unlike NHEJ, the checkpoint pathway is not required for efficient site-specific integration of plasmid DNA into the yeast genome, which is RAD52-dependent, but RAD51-independent.  相似文献   

5.
The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of γ-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.  相似文献   

6.
Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.  相似文献   

7.
Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54(-/-), KU70(-/-) and RAD54(-/-)/KU70(-/-), generated from the chicken B-cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing gamma-radiation-induced DSBs during G1-early S phase while recombinational repair is preferentially used in late S-G2 phase. RAD54(-/-)/KU70(-/-) cells were profoundly more sensitive to gamma-rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54(-/-) and RAD54(-/-)/KU70(-/-) cells, with RAD54(-/-)/KU70(-/-) cells exhibiting significantly higher levels of chromosomal aberrations than RAD54(-/-) cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.  相似文献   

8.
The repair of DNA double-strand breaks (DSBs) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and non-homologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al., DNA Repair 4, 782–792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2.  相似文献   

9.
CHK1 is one of the most important checkpoint proteins in mammalian cells for responding toDNA damage. Cells defective in CHK1 are sensitive to ionizing radiation (IR). The mechanismby which CHK1 protects cells from IR-induced killing remains unclear. DNA double strandbreaks (DSBs) induced by IR are critical lesions for cell survival. Two major complementaryDNA DSBs repair pathways exist in mammalian cells, homologous recombination repair (HRR)and non-homologous end joining (NHEJ). By using CHK1 kinase dead human cell linesestablished in our laboratory, we show here that although these human cell lines have differentCHK1 activities with different sensitivities to IR-induced killing and G2 accumulation, all thesecell lines show similar inductions and rejoining rates of DNA DSBs. These results indicate thatthe different radiosensitivities and G2 checkpoint responses in these cell lines are independent ofNHEJ, suggesting that CHK1-regulated checkpoint facilitates HRR and therefore protects cellsfrom IR-induced killing.  相似文献   

10.
In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G2, S and G1 phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G1 irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G1 irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G1 in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.  相似文献   

11.
Wu W  Wang M  Wu W  Singh SK  Mussfeldt T  Iliakis G 《DNA Repair》2008,7(2):329-338
In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of these pathways is being actively investigated. We examine DSB repair in unperturbed G1 and G2 phase cells using mouse embryo fibroblast (MEF) mutants defective in D-NHEJ and/or HRR. WT and Rad54(-/-) MEFs repair DSBs with similar efficiency in G1 and G2 phase. LIG4(-/-), DNA-PKcs(-/-), and Ku70(-/-) MEFs show more pronounced repair defects in G1 than in G2. LIG4(-/-)/Rad54(-/-) MEFs repair DSBs as efficiently as LIG4(-/-) MEFs suggesting that the increased repair efficiency in G2 relies on enhanced function of B-NHEJ rather than HRR. In vivo and in vitro plasmid end joining assays confirm an enhanced function of B-NHEJ in G2. The results show a new and potentially important cell cycle regulation of B-NHEJ and generate a framework to investigate the mechanistic basis of HRR contribution to DSB repair.  相似文献   

12.
DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ~4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR.  相似文献   

13.
The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51, Chk1-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions through regulation of HRR.  相似文献   

14.
The Schizosaccharomyces pombe homologue of Mre11, Rad32, is required for repair of UV- and ionising radiation-induced DNA damage and meiotic recombination. In this study we have investigated the role of Rad32 and other DNA damage response proteins in non-homologous end joining (NHEJ) and telomere length maintenance in S.pombe. We show that NHEJ in S.pombe occurs by an error-prone mechanism, in contrast to the accurate repair observed in Saccharomyces cerevisiae. Deletion of the rad32 gene results in a modest reduction in NHEJ activity and the remaining repair events that occur are accurate. Mutations in two of the phosphoesterase motifs in Rad32 have no effect on the efficiency or accuracy of end joining, suggesting that the role of Rad32 protein may be to recruit another nuclease(s) for processing during the end joining reaction. We also analysed NHEJ in other DNA damage response mutants and showed that the checkpoint mutant rad3-d and two recombination mutants defective in rhp51 and rhp54 (homologues of S.cerevisiae RAD51 and RAD54, respectively) are not affected. However disruption of rad22, rqh1 and rhp9 / crb2 (homologues of the S.cerevisiae RAD52, SGS1 and RAD9 genes) resulted in increased NHEJ activity. Telomere lengths in the rad32, rhp9 and rqh1 null alleles were reduced to varying extents intermediate between the lengths observed in wild-type and rad3 null cells.  相似文献   

15.
In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break can be repaired by at least two pathways of nonhomologous end joining (NHEJ) that closely resemble events in mammalian cells. In one pathway the chromosome ends are degraded to yield deletions with different sizes whose endpoints have 1 to 6 bp of homology. Alternatively, the 4-bp overhanging 3' ends of HO-cut DNA (5'-AACA-3') are not degraded but can be base paired in misalignment to produce +CA and +ACA insertions. When HO was expressed throughout the cell cycle, the efficiency of NHEJ repair was 30 times higher than when HO was expressed only in G1. The types of repair events were also very different when HO was expressed throughout the cell cycle; 78% of survivors had small insertions, while almost none had large deletions. When HO expression was confined to the G1 phase, only 21% were insertions and 38% had large deletions. These results suggest that there are distinct mechanisms of NHEJ repair producing either insertions or deletions and that these two pathways are differently affected by the time in the cell cycle when HO is expressed. The frequency of NHEJ is unaltered in strains from which RAD1, RAD2, RAD51, RAD52, RAD54, or RAD57 is deleted; however, deletions of RAD50, XRS2, or MRE11 reduced NHEJ by more than 70-fold when HO was not cell cycle regulated. Moreover, mutations in these three genes markedly reduced +CA insertions, while significantly increasing the proportion of both small (-ACA) and larger deletion events. In contrast, the rad5O mutation had little effect on the viability of G1-induced cells but significantly reduced the frequency of both +CA insertions and -ACA deletions in favor of larger deletions. Thus, RAD50 (and by extension XRS2 and MRE11) exerts a much more important role in the insertion-producing pathway of NHEJ repair found in S and/or G2 than in the less frequent deletion events that predominate when HO is expressed only in G1.  相似文献   

16.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in multi-pathways to respond to DNA damage. Lack of or inhibition of PARP-1 activity leads to slow progress of cell cycle and sensitization of cells to different stresses. Recently, it was reported that besides the Ku- dependent main non-homologous end joining (NHEJ) pathway, there is a PARP-1-dependent complementary NHEJ pathway to repair DNA double strand break (DSB). Here we show that compared with PARP-1+/+ cells, PARP-1-/- cells display a much stronger G2 checkpoint response following ionizing radiation (IR). Treatment with Chk1 siRNA abolishes the stronger G2 checkpoint response and sensitizes PARP-1-/- cells to IR. These data indicate that the stronger G2 checkpoint response in PARP-1-/- cells is CHK1-dependent, which protects cells from IR-induced killing. We also show that 4-Amino-1,8-naphthalimide (4-AN, inhibitor of PARP) but not methoxyamine (inhibitor of base excision repair (BER)), affects IR-induced G2 arrest and cell sensitivity in PARP-1+/+ cells, resulting in the phenotypes similar to those of PARP-1-/- cells. These results indicate that DSB repair from the complementary NHEJ pathway of PARP-1, but not single strand break (SSB) repair from the BER function of PARP-1, may play an essential role in the over-activated CHK1 regulated G2 checkpoint response and radiosensitivity in PARP-1-/- cells.  相似文献   

17.
DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.  相似文献   

18.
Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly, depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.  相似文献   

19.
Hyperthermia has a radiosensitizing effect, which is one of the most important biological bases for its use in cancer therapy with radiation. Although the mechanism of this effect has not been clarified in molecular terms, possible involvement of either one or both of two major DNA double-strand break (DSB) repair pathways, i.e. nonhomologous end joining (NHEJ) and homologous recombination (HR), has been speculated. To test this possibility, we examined cells of the chicken B-lymphocyte cell line DT40 and its derivatives lacking NHEJ and/or HR: KU70(-/-), DNA-PKcs(-/-/-), RAD54(-/-) and KU70(-/-)/RAD54(-/-). Radiosensitization by hyperthermia could be seen in all of the mutants, including KU70(-/-)/RAD54(-/-), which lacked both NHEJ and HR. Therefore, radiosensitization by hyperthermia cannot be explained simply by its inhibitory effects, if any, on NHEJ and/or HR alone. However, in NHEJ-defective KU70(-/-) and DNA-PKcs(-/-/-), consisting of two subpopulations with distinct radiosensitivity, the radiosensitive subpopulation, which is considered to be cells in G(1) and early S, was not sensitized. Substantial sensitization was seen only in the radioresistant subpopulation, which is considered to be cells in late S and G(2), capable of repairing DSBs through HR. This observation did not exclude possible involvement of NHEJ in G(1) and early S phase and also suggested inhibitory effects of hyperthermia on HR. Thus partial contribution of NHEJ and HR in radiosensitization by hyperthermia, especially that depending on the cell cycle stage, remains to be considered.  相似文献   

20.
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号