首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are channels responsible for calcium release from the endoplasmic reticulum (ER). We show that the anti-apoptotic protein Bcl-2 (either wild type or selectively localized to the ER) significantly inhibited InsP3-mediated calcium release and elevation of cytosolic calcium in WEHI7.2 T cells. This inhibition was due to an effect of Bcl-2 at the level of InsP3Rs because responses to both anti-CD3 antibody and a cell-permeant InsP3 ester were decreased. Bcl-2 inhibited the extent of calcium release from the ER of permeabilized WEHI7.2 cells, even at saturating concentrations of InsP3, without decreasing luminal calcium concentration. Furthermore, Bcl-2 reduced the open probability of purified InsP3Rs reconstituted into lipid bilayers. Bcl-2 and InsP3Rs were detected together in macromolecular complexes by coimmunoprecipitation and blue native gel electrophoresis. We suggest that this functional interaction of Bcl-2 with InsP3Rs inhibits InsP3R activation and thereby regulates InsP3-induced calcium release from the ER.  相似文献   

2.
The sarcoplasmic reticulum (SR) of skeletal muscle is an intracellular membranous network that controls the myoplasmic Ca2+ concentration and the contraction-relaxation cycle. Ca2+ release from the terminal cisternae (TC) region of the SR evokes contraction. How electrical depolarization of the transverse tubule is linked to Ca2+ release from the junctionally associated TC is still largely unknown. Independent evidence has been recently obtained indicating that either inositol trisphosphate (IP3) or (and) Ca2+ is (are) the chemical transmitter(s) of excitation-contraction coupling. Here we outline the experimental data in support of each transmitter and discuss possible interactive roles of Ca2+ and IP3.  相似文献   

3.
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle.  相似文献   

4.
5.
The possibility that inositol 1,4,5-trisphosphate may also act on subcellular structures different from membraneous compartments has been examined using chemically skinned skeletal muscle fibres. At about 1 to 25 microM IP3 reversibly enhanced isometric steady-state force production of these preparations at free Ca2+ concentrations corresponding to submaximum activation in a concentration-dependent manner. The maximum Ca2+-induced tension was not altered by IP3. These results show that IP3 can modulate the apparent Ca2+-sensitivity of the contractile mechanism. They suggest a new modulatory function of IP3 in skeletal muscle.  相似文献   

6.
Our previous studies have demonstrated that calmodulin binds to IP3R type I (IP3R1) in a Ca2+ dependent manner, which suggests that calmodulin regulates the IP3R1 channel. In the present study, we investigated real-time kinetics of interactions between calmodulin and IP3R1 as well as effects of calmodulin on IP3-induced Ca2+ release by purified and reconstituted IP3R1. Kinetic analysis revealed that calmodulin binds to IP3R1 in a Ca2+ dependent manner and that both association and dissociation phase consist of two components with time constants of k(a) = 4.46 x 10(2) and > 10(4) M(-1) s(-1) k(d) = 1.44 x 10(-2) and 1.17 x 10(-1) s(-1). The apparent dissociation constant was calculated to be 27.3 microM. The IP3-induced Ca2+ release through the purified and reconstituted IP3R1 was inhibited by Ca2+/calmodulin, in a dose dependent manner. We interpret our findings to mean that calmodulin binds to IP3R1 in a Ca2+ dependent manner to exert inhibitory effect on IP3R channel activity. This event may be one of the mechanisms governing the negative feedback regulation of IP3-induced Ca2+ release by Ca2+.  相似文献   

7.
Microsomal vesicles from bovine anterior pituitary accumulate Ca2+ and maintain a steady-state ambient Ca2+ level of 200 nM. IP3 and GTP both induce calcium release from the microsomal vesicles. The effect of IP3 is inhibited by polyethylene glycol (PEG), and the effect of GTP is absolutely dependent on PEG. Half-maximal effect of IP3 (without PEG) is 0.26 micron, the maximal calcium release attaining 7% of the A23187-releasable pool. The same values for GTP (in the presence of PEG) are 80 microM and 10%, respectively. GTP potentiates the effect of IP3. This potentiation is not mediated by protein phosphorylation.  相似文献   

8.
V Henne  A Piiper  H D S?ling 《FEBS letters》1987,218(1):153-158
It has been shown recently by several groups that 5'-GTP can release calcium from intracellular compartments independently from inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) by a mechanism which seems to be different from that used by Ins(1,4,5)P3. We report here for the first time that the 5'-GTP-sensitive and the Ins(1,4,5)P3-sensitive calcium pools reside in different intracellular compartments.  相似文献   

9.
Biological messengers can be "caged" by adding a single photosensitive group that can be photolyzed by a light flash to achieve spatially and temporally precise biochemical control. Here we report that photolysis of a double-caged form of the second messenger inositol 1,4,5-trisphosphate (IP3) triggers focal calcium release in Purkinje cell somata, dendrites, and spines as measured by two-photon microscopy. In calbindin knock-out Purkinje cells, peak calcium increased with flash energy with higher cooperativity for double-caged IP3 than for conventional single-caged IP3, consistent with a chemical two-photon effect. Spine photolysis of double-caged IP3 led to local calcium release. Uncaging of glycerophosphoryl-myo-inositol 4,5-bisphosphate (gPIP2), a poorly metabolizable IP3 analog, led to less well localized release. Thus, IP3 breakdown is necessary for spine-specificity. IP3- and gPIP2-evoked signals declined from peak with similar, slow time courses, indicating that release lasts hundreds of milliseconds and is terminated not by IP3 degradation but by intrinsic receptor dynamics. Based on measurements of spine-dendrite coupling, IP3-evoked calcium signals are expected to be at least 2.4-fold larger in their spine of origin than in nearby spines, allowing IP3 to act as a synapse-specific second messenger. Unexpectedly, single-caged IP3 led to less release in somata and was ineffective in dendrites and spines. Calcium release using caged gPIP2 was inhibited by the addition of single-caged IP3, suggesting that single-caged IP3 is an antagonist of calcium release. Caging at multiple sites may be an effective general approach to reducing residual receptor interaction.  相似文献   

10.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP mobilized 8% and 90% of the ionophore-releaseable Ca2+ pool from rat liver microsomes, respectively. In contrast to GTP, which acted after a lag-time, the Ins(1,4,5)P3-induced Ca2+ release was immediate. Poly(ethylene glycol) inhibited the effect of Ins(1,4,5)P3 and enhanced that of GTP. Ins(1,4,5)P3 accelerated and enhanced the GTP-induced Ca2+ release. Guanylyl imidodiphosphate inhibited competitively the GTP stimulated Ca2+ release, but not the GTP-dependent phosphorylation of the Mr 17,000 and 38,000 protein bands.  相似文献   

11.
The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.  相似文献   

12.
13.
Minimal latency of calcium release in frog twitch muscle fibres   总被引:3,自引:0,他引:3  
Intracellular release of calcium in frog skeletal muscle fibres was monitored by the use of arsenazo III, in response to voltage clamped depolarizing pulses. A latency of a few milliseconds was evident between the onset of depolarization and the first detectable rise in the arsenazo-calcium signal, and this decreased logarithmically as the depolarization was increased. The minimal latency with strong depolarization (to +20 to +100 mV) was about 2 ms at 5 degrees C. This delay appears to be sufficiently long to be compatible with a chemically mediated coupling mechanism between depolarization and calcium release from the sarcoplasmic reticulum.  相似文献   

14.
Mechanically skinned skeletal muscle fibres of the crab Carcinus maenas have been used to investigate the mechanism of calcium release from the sarcoplasmic reticulum. Calcium release has been monitored by the amplitude and kinetics of the tension developed by the fibre. Results show that a very low calcium concentration, insufficient to directly activate contractile proteins, induces a release of calcium from the SR. This release is stimulated by low concentrations of caffeine and inhibited by small amounts of EGTA. Thus, a graded calcium-induced calcium release mechanism dependent on extrareticular calcium concentration has been demonstrated in skinned crab muscle fibre.  相似文献   

15.
Antipyrylazo III myoplasmic calcium transients were recorded in cut skeletal muscle fibres of the frog (Rana esculenta), using the double vaseline-gap voltage-clamp system. Intracellular calcium removal mechanisms were analysed, using a slightly modified model taken from the literature. Parameter values reported here are generally consistent with those obtained by the original model. Caffeine (0.5 mmol.l-1) moderately enhanced the overall myoplasmic calcium removal. In particular, the rate constant of the non-saturable uptake increased by 51% on the average, but there was a considerable fiber-to-fiber variation. The kinetic features of the binding sites representing the saturable uptake did not change significantly while the concentration of the available sites decreased by 36%. It is concluded that the caffeine-induced changes of the calcium removal components can be explained by supposing an increased resting myoplasmatic Ca2+ concentration in the presence of the drug.  相似文献   

16.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

17.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

18.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.  相似文献   

19.
The role of phosphoinositide turnover in the mediation of acid secretion was examined in an enriched preparation of isolated rabbit parietal cells (75%). Both gastrin and CCK-8 (octapeptide of cholecystokinin) stimulated [14C]aminopyrine (AP) uptake by cells (EC50 0.07 +/- 0.03 nM (gastrin) and 0.093 +/- 0.065 nM (CCK-8] and increased [3H]inositol phosphates cellular contents (EC50 0.142 +/- 0.016 nM (gastrin) and 0.116 +/- 0.027 nM (CCK-8] in a parallel fashion. In addition, the EC50 values for both phenomenon were quite similar to the Kd values obtained from binding experiments. HPLC analysis of the different [3H]inositol phosphates produced under gastrin or CCK-8 stimulation showed a 2-fold increase in [3H]Ins(1,4,5)P3 levels within 5 s with a concomitant increase in [3H]Ins(1,4)P2 content within 15 s. A low but significant rise in [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 cellular contents was also observed. No difference between gastrin- and CCK-8-induced inositol phosphates production could be shown. We can conclude that gastrin and CCK-8 display an identical profile of action, suggesting that they stimulate the acid secretory function of parietal cells through the same receptor site coupled to the Ins(1,4,5)P3 production.  相似文献   

20.
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R), a Ca2+-release channel localized to the endoplasmic reticulum, plays a critical role in generating complex cytoplasmic Ca2+ signals in many cell types. Three InsP3R isoforms are expressed in different subcellular locations, at variable relative levels with heteromultimer formation in different cell types. A proposed reason for this diversity of InsP3R expression is that the isoforms are differentially inhibited by high cytoplasmic free Ca2+ concentrations ([Ca2+]i), possibly due to their different interactions with calmodulin. Here, we have investigated the possible roles of calmodulin and bath [Ca2+] in mediating high [Ca2+]i inhibition of InsP3R gating by studying single endogenous type 1 InsP3R channels through patch clamp electrophysiology of the outer membrane of isolated Xenopus oocyte nuclei. Neither high concentrations of a calmodulin antagonist nor overexpression of a dominant-negative Ca2+-insensitive mutant calmodulin affected inhibition of gating by high [Ca2+]i. However, a novel, calmodulin-independent regulation of [Ca2+]i inhibition of gating was revealed: whereas channels recorded from nuclei kept in the regular bathing solution with [Ca2+] approximately 400 nM were inhibited by 290 muM [Ca2+]i, exposure of the isolated nuclei to a bath solution with ultra-low [Ca2+] (<5 nM, for approximately 300 s) before the patch-clamp experiments reversibly relieved Ca2+ inhibition, with channel activities observed in [Ca2+]i up to 1.5 mM. Although InsP3 activates gating by relieving high [Ca2+]i inhibition, it was nevertheless still required to activate channels that lacked high [Ca2+]i inhibition. Our observations suggest that high [Ca2+]i inhibition of InsP3R channel gating is not regulated by calmodulin, whereas it can be disrupted by environmental conditions experienced by the channel, raising the possibility that presence or absence of high [Ca2+]i inhibition may not be an immutable property of different InsP3R isoforms. Furthermore, these observations support an allosteric model in which Ca2+ inhibition of the InsP3R is mediated by two Ca2+ binding sites, only one of which is sensitive to InsP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号