首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoskeletons of erythrocytes from the toad Bufo marinus are composed of a surface-associated cytoskeleton that encapsulates the annular bundle of microtubules known as the marginal band (MB) and the centrally located nucleus. As seen by phase-contrast microscopy, the microtubules (MTs) of the MB remain tightly bundled after cell lysis without the need for added stabilizing factors. The integrity of this structure suggested that in addition to MTs other components were present in the MB and were responsible for its stability. Thin (less than 18 nm) platinum-carbon (Pt-C) replicas of freeze-dried cytoskeletons prepared by using a modified Balzers 300 system provided a novel method of sample preparation for a high-resolution study of the ultrastructure of the MB. Electron micrographs of replicas revealed that, the MTs of the MB displayed numerous filamentous projections which, when viewed in stereo, appear as side-arm connections between adjacent MTs. Immunofluorescence data show that monospecific antibodies to tubulin and to MT-associated protein 2 (MAP2) from brain each detect cross-reactive material in the MB. The combination of immunogold cytochemistry with Pt-C replication provided the increased resolution required to identify the individual structures recognized by antibodies to tubulin and MAP2. As expected, antitubulin labeled the MTs of the MB. However, anti-MAP2 antibodies were localized specifically to the cross-bridging filaments between adjacent MTs. Thus, a MAP2-like protein was identified in situ as the crossbridging filament that bundles MTs to form a stable MB.  相似文献   

2.
Erythrocytes of bullfrogs (Rana catesbeiana) infected with frog erythrocytic virus are spheroid and their nucleus is displaced. In contrast, uninfected cells are ellipsoid and have a centralized nucleus. Fluorescent staining revealed that these changes are correlated with alterations to components of the erythrocyte cytoskeleton. Uninfected erythrocytes contained a broad, continuous marginal band of microtubules, which appeared thinner and interrupted in infected cells. The described disruption of microtubules was associated with an inability to polymerize the tubulin pool with the addition of 12 microM taxol. The arrangement of submembranous microfilaments in uninfected erythrocytes was not significantly altered in infected cells. Vimentin filaments were distributed throughout the cytoplasm and around the nucleus of uninfected cells, and concentrated at the cell and nuclear peripheries. Cytoplasmic pockets that did not contain vimentin filaments were associated with the viral assembly site(s) in infected cells. These data suggest that the distortion of viral-infected erythrocytes could be due, in part, to an irreversible depolymerization of microtubules of the marginal band and a reorganization of the vimentin filament network.  相似文献   

3.
One prominent cytoskeletal feature of non-mammalian vertebrate erythrocytes is the marginal band (MB), composed of microtubules. However, there have been several reports of MB-associated F-actin. We have further investigated the function of MB-associated F-actin, using newt erythrocytes having large, thick MBs. Confocal microscopy revealed a distinctive band of F-actin colocalizing point- by-point with MB microtubules. Furthermore, the F-actin band was present in isolated elliptical MBs, but absent in membrane skeletons lacking MBs. F-actin depolymerizing agents did not affect F-actin band integrity in isolated MBs, indicating its non-dynamic state. However, exposure to elastase resulted in F-actin removal and MB circularization. These results provide evidence of a strong association of F-actin with MB microtubules in mature ellipsoidal erythrocytes. To assess the true extent of mechanical stress on the cytoskeleton, erythrocytes were observed by video microscopy during flow in vivo. Moving with long axis parallel to flow direction, cells underwent reversible shape distortion as they collided vigorously with other erythrocytes and vessel walls. In addition, cells twisted into figure-8 shapes, a cytoskeletal property that may provide physiological advantages during flow. Our results, together with those of others, yield a consistent picture in which developing erythrocytes undergo transition from spheroids to immature discoids to mature ellipsoids. The causal step in discoid formation is biogenesis of circular MBs with sufficient flexural rigidity to determine cell shape. F-actin binding to MB microtubules then creates a composite system, enhancing flexural rigidity to produce and maintain ellipsoidal shape during the physical challenges of blood flow in vivo.  相似文献   

4.
The marginal band (MB) of nucleated erythrocytes is composed of a bundle of microtubules that encircles the cell immediately beneath the plasma membrane. When cells are lysed in buffer containing Triton X-100 the MB microtubules remain intact, and the nucleus remains suspended at the cell center by a filamentous network called the trans-MB material that connects the nucleus to the peripheral MB. When these lysed cells are prepared for indirect immunofluorescence by use of an antibody to chick brain microtubule-associated protein 2 (MAP 2), intense staining of the MB results; no staining is evident in the areas occupied by the nucleus or the trans-MB material. Controls demonstrate that the staining is specific, because no staining occurs with fluorescent goat antirabbit serum alone or when nonimmune serum is used as the first antibody. Furthermore, the fluorescence of the MB is not affected by pretreatment of the immune serum with purified tubulin, but staining is prevented by pretreatment of the immune serum with purified MAP 2. To determine which protein component of the MB was responsible for the positive immunofluorescence results, 125I-protein A staining was used after the protein components of the isolated cytoskeleton had been resolved by SDS-polyacrylamide gels. Controls showed that the antiserum could react on SDS gels with MAP 2 from purified chick brain microtubules. The results with the cytoskeletal proteins demonstrated that the antiserum reacted only with a high molecular weight protein having a molecular weight similar, but not identical, to that of chick brain MAP 2. Thus, it is concluded that a protein with antigenic characteristics similar to those of chick brain MAP 2 is a component of the MB. The results are discussed in terms of the possible function of MAP 2 in the MB.  相似文献   

5.
The organization of actin, tubulin, and vimentin was studied in protruding lamellae of human fibroblasts induced by the aminoglycoside antibiotic neomycin, an inhibitor of the phosphatidylinositol cycle. Neomycin stimulates the simultaneous protrusion of lamellae in all treated cells, and the lamellae remain extended for about 15–20 min, before gradually withdrawing. The pattern and distribution of actin, tubulin, and vimentin during neomycin stimulation were analyzed by fluorescence and electron microscopy. F-actin in the newly formed lamellae is localized in a marginal band at the leading edge. Tubulin is colocalized with F-actin in the marginal band, but the newly formed lamellae are initially devoid of microtubules. Over a period of 10 to 20 min after the addition of neomycin, microtubules grow into the lamellae from the adjacent cytoplasm, while the intensity of tubulin staining of the marginal band decreases. Distribution of vimentin remains unchanged in neomycin-treated cells and vimentin filaments do not enter the new protrusions. Treatment of cells with colchicine and Taxol do not inhibit neomycin-induced protrusion but protrusions are no longer localized at the ends of cell processes and occur all around the cell periphery. We conclude that actin filaments are the major component of the cytoskeleton involved in generating protrusions. Microtubules and, possibly, intermediate filaments control the pattern of protrusions by their interaction with actin filaments.  相似文献   

6.
How important are the changes of microtubule control for the realization of actin cortex changes during neoplastic transformation? To answer this question we studied the actin cytoskeleton and intermediate filaments condition after colcemid destruction or taxol disintegration of microtubule system in non-transformed cells BALB/c 3T3 and in the same cells transformed by Ha-ras gene. We have come to a conclusion that the differences between non-transformed and transformed cells in the actin cytoskeleton organization remain the same after specific inhibitor action on the microtubules; after the microtubules are destroyed the differences between the two cell types appear in the intermediate filament organization; there are reasons to assume that changes in the actin cortex structure may play the central role in morphological transformation expression.  相似文献   

7.
Endothelium lining the inner surface of vessels regulates permeability of vascular wall by providing exchange between blood circulation in vessels and tissue fluid and therefore performs a barrier function. Endothelial cells (ECs) in culture are able to maintain the barrier function peculiar to cells of vascular endothelium in vivo. The endothelial monolayer in vitro is a unique model system that allows studying interaction of cytoskeletal and adhesive structures of endotheliocytes from the earliest stages of its formation. In the present work, we described and quantitatively characterized the changes of EC cytoskeleton from the moment of spreading of endotheliocytes on glass and the formation of the first contacts between neighbor cells until formation of a functional confluent monolayer. The main type of intermediate filaments of ECs are vimentin filaments. At different stages of endothelial monolayer formation, disposition of vimentin filaments and their amount do not change essentially, they occupy more than 80% of the cell area. Actin filaments system of endotheliocytes is represented by cortical actin at the cell periphery and by bundles of actin stress fibers organized in parallel. With formation of contacts between cells in native endothelial cells, the number of actin filaments rises and thickness of their bundles increases. With formation of endothelial monolayer, there are also changes in the microtubules system—their number increases at the cell edge. At all stages of EC monolayer formation, the number of microtubules in the region of the already formed intercellular contacts exceeds the number of microtubules in the free lamella region of the cell.  相似文献   

8.
Summary Various stabilization and extraction procedures were tested to demonstrate the ultrastructural organization of the cytoskeleton in normal, locomoting Amoeba proteus. Most reliable results were obtained after careful fixation in glutaraldehyde/lysine followed by prolonged extraction in a polyethylene glycol/Triton X-100 solution. Before dehydration in a graded series of ethanol and critical-point drying, the amoebae were split by the sandwich-technique, i.e., by mechanical cleavage of cells mounted between two poly-L-lysine-coated glass slides. Platinum-carbon replicas as well as thin sections prepared from such cell fragments revealed a cytoskeleton composed of at least four different types of filaments: (1) 5–7-nm filaments organized as a more or less ordered cortical network at the internal face of the plasma membrane and probably representing F-actin; (2) 10–12-nm filaments running separately or slightly aggregated through the cytoplasm and probably representing intermediate filaments; (3) 24–26-nm filaments forming a loose network and probably representing microtubules; and (4) 2–4-nm filaments as connecting elements between the other cytoskeleton constituents. Whereas microfilaments are responsible for protoplasmic streaming and other motile phenomena, the function of intermediate filaments and cytoplasmic microtubules in amoebae is still obscure.  相似文献   

9.
The integration of the vimentin intermediate filament (IF) cytoskeleton and cellular organelles in vivo is an incompletely understood process, and the identities of proteins participating in such events are largely unknown. Here, we show that the Golgi complex interacts with the vimentin IF cytoskeleton, and that the Golgi protein formiminotransferase cyclodeaminase (FTCD) participates in this interaction. We show that the peripherally associated Golgi protein FTCD binds directly to vimentin subunits and to polymerized vimentin filaments in vivo and in vitro. Expression of FTCD in cultured cells results in the formation of extensive FTCD-containing fibers originating from the Golgi region, and is paralleled by a dramatic rearrangements of the vimentin IF cytoskeleton in a coordinate process in which vimentin filaments and FTCD integrate into chimeric fibers. Formation of the FTCD fibers is obligatorily coupled to vimentin assembly and does not occur in vim(-/-) cells. The FTCD-mediated regulation of vimentin IF is not a secondary effect of changes in the microtubule or the actin cytoskeletons, since those cytoskeletal systems appear unaffected by FTCD expression. The assembly of the FTCD/vimentin fibers causes a coordinate change in the structure of the Golgi complex and results in Golgi fragmentation into individual elements that are tethered to the FTCD/vimentin fibers. The observed interaction of Golgi elements with vimentin filaments and the ability of FTCD to specifically interacts with both Golgi membrane and vimentin filaments and promote their association suggest that FTCD might be a candidate protein integrating the Golgi compartment with the IF cytoskeleton.  相似文献   

10.
Organization of the cytoskeleton in early Drosophila embryos   总被引:29,自引:21,他引:8       下载免费PDF全文
The cytoskeleton of early, non-cellularized Drosophila embryos has been examined by indirect immunofluorescence techniques, using whole mounts to visualize the cortical cytoplasm and sections to visualize the interior. Before the completion of outward nuclear migration at nuclear cycle 10, both actin filaments and microtubules are concentrated in a uniform surface layer a few micrometers deep, while a network of microtubules surrounds each of the nuclei in the embryo interior. These two filament-rich regions in the early embryo correspond to special regions of cytoplasm that tend to exclude cytoplasmic particles in light micrographs of histological sections. After the nuclei in the interior migrate to the cell surface and form the syncytial blastoderm, each nucleus is seen to be surrounded by its own domain of filament-rich cytoplasm, into which the cytoskeletal proteins of the original surface layer have presumably been incorporated. At interphase, the microtubules seem to be organized from the centrosome directly above each nucleus, extending to a depth of at least 40 microns throughout the cortical region of cytoplasm (the periplasm). During this stage of the cell cycle, there is also an actin "cap" underlying the plasma membrane immediately above each nucleus. As each nucleus enters mitosis, the centrosome splits and the microtubules are rearranged to form a mitotic spindle. The actin underlying the plasma membrane spreads out, and closely spaced adjacent spindles become separated by transient membrane furrows that are associated with a continuous actin filament-rich layer. Thus, each nucleus in the syncytial blastoderm is surrounded by its own individualized region of the cytoplasm, despite the fact that it shares a single cytoplasmic compartment with thousands of other nuclei.  相似文献   

11.
The cytoskeleton of isolated murine primitive erythrocytes   总被引:1,自引:0,他引:1  
Summary Cytoskeletons of primitive erythrocytes have been isolated from the embryos of day 12 pregnant C57/Bl mice and examined by transmission electron microscopy, immunofluorescence microscopy, and SDS-polyacrylamide gel electrophoresis. Microtubules are the most prominent cytoskeletal component. They are found either singly or organized into loose bundles just under the plasma membrane, but do not form classical marginal bands in most cells. Immunofluorescence with a polyclonal tubulin antiserum confirms this distribution and further reveals numerous mitotic figures among the cells. Rhodamine-conjugated phalloidin and heavy meromyosin labeling reveal that actin is localized in the cortex of the primitive erythrocyte in the form of 6 nm filaments. Antibody directed against avian erythrocyte alpha spectrin demonstrates that spectrin is also found in the cortex. Occasional 10-nm intermediate filaments, observed in the primitve erythrocytes by electron microscopy, are believed to be of the vimentin class based on positive reaction of the cells with vimentin-specific antiserum. In addition, a band in erythrocyte cytoskeletons comigrates in SDS-polyacrylamide gels with vimentin isolated from mouse kidney. Spectrin and actin were also found to be associated with the membrane of primitive erythrocytes when membrane ghost preparations were analyzed by SDS-polyacrylamide gel electrophoresis.  相似文献   

12.
Acrylamide, a known disrupter of intermediate filaments, has been used to produce the collapse of vimentin filaments in bovine lens epithelial (BEL) cells, and its potential modulation of staurosporine-induced apoptosis has been investigated. In BEL cells, short treatments with acrylamide caused the collapse of vimentin filaments and microtubules and the almost complete disappearance of stress fibers, with thick f-actin bundles remaining in the cell periphery. Actin organization was less affected in cells pretreated with colchicine and in spreading cells, suggesting that extended microtubules and vimentin filaments are required for acrylamide to produce its maximal effects. Acrylamide alone slightly increased apoptosis compared to controls. However, simultaneous exposure to acrylamide and staurosporine for 8h produced significantly less apoptosis than staurosporine alone, and preincubation with acrylamide followed by staurosporine markedly reduced apoptosis at 8 and 24h of treatment. Acrylamide seems therefore to have a dual effect on BEL cell survival.  相似文献   

13.
During primary culture, arterial smooth-muscle cells (SMCs) undergo transition from a contractile to a synthetic phenotype. As a consequence, they lose the ability to contract and, instead, acquire the ability to synthesize DNA, divide and produce extracellular-matrix components. In the present study, we used cytochemical and electron-microscopic methods to study the organization of the cytoskeleton in primary cultures of adult rat and human arterial SMCs. Freshly isolated cells were all in contractile phenotype and stained intensely with NBD-phallacidin, a fluorescent marker for F-actin. Diffuse, positive staining was also obtained using indirect-immunofluorescence microscopy with antibodies against tubulin and vimentin, which are subunit proteins of microtubules and intermediate filaments, respectively. Fine structurally, the cytoplasm of these cells was mainly filled with microfilament bundles coalescing in dense bodies. After a few hours in culture, the SMCs attached to the substrate and started to extend processes in various directions. These stained with antibodies to tubulin and vimentin, but not with NBD-phallacidin. Within 1-3 days of culture, the cells spread out on the substrate and developed a system of actin-containing stress fibre bundles spanning their entire length, as well as a radiating system of microtubules and vimentin filaments, originating in the juxtanuclear region. Fine structurally, these changes corresponded to a marked decrease in the number of microfilaments, an increase in the number of microtubules and intermediate filaments, and the formation of an extensive rough endoplasmic reticulum and a large Golgi complex. The morphological transformation of the cells was accompanied by the coordinated activation of DNA, RNA and protein synthesis.  相似文献   

14.
Chemokine-induced polarization of lymphocytes involves the rapid collapse of vimentin intermediate filaments (IFs) into an aggregate within the uropod. Little is known about the interactions of lymphocyte vimentin with other cytoskeletal elements. We demonstrate that human peripheral blood T lymphocytes express plectin, an IF-binding, cytoskeletal cross-linking protein. Plectin associates with a complex of structural proteins including vimentin, actin, fodrin, moesin, and lamin B in resting peripheral blood T lymphocytes. During chemokine-induced polarization, plectin redistributes to the uropod associated with vimentin and fodrin; their spatial distribution indicates that this vimentin-plectin-fodrin complex provides a continuous linkage from the nucleus (lamin B) to the cortical cytoskeleton. Overexpression of the plectin IF-binding domain in the T cell line Jurkat induces the perinuclear aggregation of vimentin IFs. Plectin is therefore likely to serve as an important organizer of the lymphocyte cytoskeleton and may regulate changes of lymphocyte cytoarchitecture during polarization and extravasation.  相似文献   

15.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

16.
The cytoskeleton is connected to the nuclear interior by LINC (linker of nucleoskeleton and cytoskeleton) complexes located in the nuclear envelope. These complexes consist of SUN proteins and nesprins present in the inner and outer nuclear membrane respectively. Whereas SUN proteins can bind the nuclear lamina, members of the nesprin protein family connect the nucleus to different components of the cytoskeleton. Nesprin-1 and -2 can establish a direct link with actin filaments, whereas nesprin-4 associates indirectly with microtubules through its interaction with kinesin-1. Nesprin-3 is the only family member known that can link the nuclear envelope to intermediate filaments. This indirect interaction is mediated by the binding of nesprin-3 to the cytoskeletal linker protein plectin. Furthermore, nesprin-3 can connect the nucleus to microtubules by its interactions with BPAG1 (bullous pemphigoid antigen 1) and MACF (microtubule-actin cross-linking factor). In contrast with the active roles that nesprin-1, -2 and -4 have in actin- and microtubule-dependent nuclear positioning, the role of nesprin-3 is likely to be more passive. We suggest that it helps to stabilize the anchorage of the nucleus within the cytoplasm and maintain the structural integrity and shape of the nucleus.  相似文献   

17.
Actin cytoskeleton of resting bovine platelets   总被引:2,自引:0,他引:2  
Actin filaments in resting discoid bovine platelets were examined by fluorescence and electron microscopy. Rhodamine-phalloidin staining patterns showed a characteristic wheel-like structure which consisted of a central small circle connected by several radial spokes to a large peripheral circle. This wheel-like structure was composed of actin filaments forming a characteristic arrowhead structure with heavy meromyosin from muscle. Actin filaments were densely arrayed in parallel with a marginal microtubule band and radiated out from the center to the periphery. Platelets treated with colchicine lost their marginal microtubule band but retained their wheel-like structure and normal discoid form. Cytochalasin B disrupted the wheel-like structure but not the marginal microtubule band or the normal discoid form. After simultaneous treatment with both cytochalasin B and colchicine, platelets lost their discoid shape. These results suggest that actin filaments and microtubules both play important roles in the maintenance of the discoid shape of resting bovine platelets.  相似文献   

18.
We have studied the dogfish erythrocyte cytoskeletal system, which consists of a marginal band of microtubules (MB) and trans-marginal band material (TBM). The TBM appeared in whole mounts as a rough irregular network and in thin sections as a surface-delimiting layer completely enclosing nucleus and MB. In cells incubated at 0 degrees C for 30 min or more, the MB disappeared but the TBM remained. MB reassembly occurred with rewarming, and was inhibited by colchicine. Flattened elliptical erythrocyte morphology was retained even when MBs were absent. Total solubilization of MB and TBM at low pH, or dissolution of whole anucleate cytoskeletons, yielded components comigrating with actin, spectrin, and tubulin standards during gel electrophoresis. Mass-isolated MBs, exhibiting ribbonlike construction apparently maintained by cross-bridges, contained four polypeptides in the tubulin region of the gel. Only these four bands were noticeably increased in the soluble phase obtained from cells with 0 degrees C- disassembled MBs. The best isolated MB preparations contained tubulin but no components comigrating with high molecular weight microtubule- associated proteins, spectrin, or actin. Actin and spectrin therefore appear to be major TBM constituents, with tubulin localized in the MB. The results are interpreted in terms of an actin- and spectrin- containing subsurface cytoskeletal layer (TBM), related to that of mammalian erythrocytes, which maintains cell shape in the absence of MBs. Observations on abnormal pointed erythrocytes containing similarly pointed MBs indicate further that the MB can deform the TBM from within so as to alter cell shape. MBs may function in this manner during normal cellular morphogenesis and during blood flow in vivo.  相似文献   

19.
Giant axonal neuropathy (GAN) is a severe autosomal recessive disease affecting both the peripheral and central nervous systems. It is characterized by segmental axonal ballooning due to large neurofilamentous masses and abnormal aggregation of filaments in other cell types including glial cells. Coomassie blue staining of the detergent-resistant cytoskeleton of cultured skin fibroblasts from three patients with GAN revealed the presence of large cytoplasmic filamentous aggregates in the great majority of cells. The aggregates were birefringent when viewed under polarization microscopy and electron microscopy showed that they were composed of aggregates of 8 to 10 nm intermediate filaments. The aggregates stained with antisera specific for vimentin but did not stain with antibodies to actin, tubulin, or the high molecular weight (HMW) microtubule associated protein. Examination of the fibroblasts containing the vimentin aggregates with antibodies to tubulin and the HMW protein showed that they had a normal distribution of microtubules and that the microtubules present were normally associated with the HMW protein. The results suggest that giant axonal neuropathy is a generalized inborn error of organization of intermediate filaments and that a defect in microtubules or their association with HMW protein is not responsible for the observed aggregation of intermediate filaments in this disease. Further study of GAN may be useful in understanding the function of intermediate filaments.  相似文献   

20.
The cytoskeleton, mainly composed of actin filaments, microtubules, and intermediate filaments, is involved in cell proliferation, the maintenance of cell shape, and the formation of cellular junctions. The organization of the intermediate filaments is regulated by phosphorylation and dephosphorylation. We examined cell population growth, apoptotic cell death, and the morphology of cytoskeletal components in myoblast cultures derived from patients with the 3243A-->G mutation in mitochondrial DNA (mtDNA) and from control subjects by means of assays detecting cellular nucleic acids, histone-associated DNA fragments and by immunolabeling of cytoskeletal components. Population growth was slower in the 3243A-->G myoblast cultures, with no difference in the amount of apoptotic cell death. The organization of vimentin filaments in myoblasts with 3243A-->G was disturbed by randomization of filament direction and length, whereas no disturbances were observed in the other cytoskeletal proteins. Vimentin filaments formed large bundles surrounding the nucleus in mtDNA-less (rho(0)) osteosarcoma cells and in osteosarcoma cells after incubation with sodium azide and nocodazole. We conclude that defects in oxidative phosphorylation lead to selective disruption of the vimentin network, which may have a role in the pathophysiology of mitochondrial diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号