首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases.  相似文献   

2.
Thioesterase (TE) domain of fatty acid synthase (FAS) is an attractive therapeutic target for design and development of anticancer drugs. In this present work, we search for the potential FAS inhibitors of TE domain from the ZINC database based on similarity search using three natural compounds as templates, including flavonoids, terpenoids, and phenylpropanoids. Molecular docking was used to predict the interaction energy of each screened ligand compared to the reference compound, which is methyl γ-linolenylfluorophosphonate (MGLFP). Based on this computational technique, rosmarinic acid and its eight analogs were observed as a new series of potential FAS inhibitors, which showed a stronger binding affinity than MGLFP. Afterward, nine docked complexes were studied by molecular dynamics simulations for investigating protein–ligand interactions and binding free energies using MM-PB(GB)SA, MM-3DRISM-KH, and QM/MM-GBSA methods. The binding free energy calculation indicated that the ZINC85948835 (R34) displayed the strongest binding efficiency against the TE domain of FAS. There are eight residues (S2308, I2250, E2251, Y2347, Y2351, F2370, L2427, and E2431) mainly contributed for the R34 binding. Moreover, R34 could directly form hydrogen bonds with S2308, which is one of the catalytic triad of TE domain. Therefore, our finding suggested that R34 could be a potential candidate as a novel FAS-TE inhibitor for further drug design.  相似文献   

3.
The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the thioesterase (TE) domain of the bovine fatty acid synthase (FASN) gene and to evaluate the extent to which they were associated with beef fatty acid composition. The four exons in FASN that encode for the TE domain were sequenced, and three SNPs, AF285607:g.17924A>G, g.18663T>C and g.18727C>T, were identified. Purebred Angus bulls (n = 331) were classified into three genotype groups, g.17924AA (n = 121), g.17924AG (n = 168) and g.17924GG (n = 42). The g.17924A>G genotype was significantly associated with fatty acid composition of longissimus dorsi muscle of Angus bulls. Cattle with the g.17924GG genotype had lower myristic acid (C14:0; P < 0.0001), palmitic acid (C16:0, P < 0.05) and total saturated fatty acid contents (P < 0.01), greater health index (P < 0.001), oleic acid content (C18:1; P < 0.001) and total monounsaturated fatty acid concentration (P < 0.01) in the total lipids and triacylglycerols fraction than did those with the g.17924AA genotype. Because of the linkage disequilibrium between SNPs g.17924A>G and g.18663T>C, similar significant associations of fatty acid contents with the g.18663T>C genotypes were observed. In conclusion, the SNPs g.17924A>G and g.18663T>C may be used as DNA markers to select breeding stock that have a healthier fatty acid composition.  相似文献   

4.
The interactions of long chain fatty acids (FA) with wild type (WT) fatty acid binding proteins (FABP) and engineered FABP mutants have been monitored to determine the equilibrium binding constants as well as the rate constants for binding and dissociation. These measurements have been done using the fluorescent probes, ADIFAB and ADIFAB2, that allow the determination of the free fatty acid (FFA) concentration in the reaction of FA with proteins and membranes. The results of these studies indicate that for WT proteins from adipocyte, heart, intestine, and liver, Kd values are in the nM range and affinities decrease with increasing aqueous solubility of the FA. Binding affinities for heart and liver are generally greater than those for adipocyte and intestine. Moreover, measurements of the rate constants indicate that binding equilibrium at 37øC is achieved within seconds for all FA and FABPs. These results, together with the level of serum (unbound) FFA, suggests a buffering action of FABPs that helps to maintain the intracellular concentration of FFA so that the flux of FFA between serum and cells occurs down a concentration gradient. Measurements of the temperature dependence of binding reveal that the free energy is predominately enthalpic and that the enthalpy of the reaction results from FA-FABP interactions within the binding cavity. The nature of these interactions were investigated by determining the thermodynamics of binding to engineered point mutants of the intestinal FABP. These measurements showed that binding affinities did not report accurately the changes in protein-FA interactions because changes in the binding entropy and enthalpy tend to compensate. For example, an alanine substitution for arginine 106 yields a 30 fold increase in binding affinity, because the loss in enthalpy due to the elimination of the favorable interaction between the FA carboxylate and Arg106, is more than compensated for by an increase in entropy. Thus understanding the effects of amino acid replacements on FA-FABP interactions requires measurements of enthalpy and entropy, in addition to affinity.  相似文献   

5.
杨柳  朱至  刘爱秋  吕雪峰 《生物工程学报》2013,29(11):1681-1686
利用基因工程大肠杆菌直接从头生物合成脂肪酸乙酯 (生物柴油) 的相关研究引起了国内外研究人员的广泛关注。在本课题组已经构建的能够从头合成脂肪酸乙酯的大肠杆菌菌株KC3的基础上,通过替换表达不同来源的硫酯酶,发现表达来源于香樟树的硫酯酶Cc FatB1基因能够提高脂肪酸乙酯产量。进一步通过共表达Cc FatB1和大肠杆菌硫酯酶tesA’基因,以及启动子优化,获得了高产脂肪酸乙酯工程菌株KC4。KC4菌株在摇瓶条件和发酵条件下的单位生物量脂肪酸乙酯产率分别为21.4 mg/ (L?OD600)和31.16 mg/ (L?OD600)。该工程菌株的构建进一步提高了脂肪酸乙酯产量,显示了通过基因工程改造大肠杆菌从头合成生物柴油的应用潜力。  相似文献   

6.
Subtilisin hydrolysis of chicken liver fatty acid syntheiase yields polypeptides of molecular weights 220,000, 160,000 and 35,000. The larger peptides are further degraded to proteins of molecular weights 122,000 and 105,000. When 50% and 80% of the synthetase subunits are cleaved, there is a loss of 10% and 40% of fatty acid synthetase activity, respectively, indicating that proteolysis of the 240,000-mol. wt. subunit does not substantially affect palmitate synthesis provided that the component polypeptides remain associated with each other. Ammonium sulfate fractionation yields a fraction containing the palmitoyl thioesterase activity. Polyacrylamide gel electrophoresis of this fraction under both nondenaturing and denaturing conditions yields one band with an estimated molecular weight of 35,000. The isolated thioesterase is specific for palmitoyl and stearoyl thioesters (myristoyl-CoA is hydrolyzed at 15% the rate of palmitoyl-CoA). The enzyme is inhibited byN-ethylmaleimide and diisopropylfluorophosphate, suggesting that both an active -SH and -OH are involved in catalysis. However, preincubation of the thioesterase with decanoly-CoA protected the enzyme against inhibition by diisopropylfluorophosphate but not byN-ethylmaleimide, suggesting that an active OH (seryl or threonyl) is involved in the hydrolysis of the palmitoyl group. This active hydroxyl group is uniquely inhibited by diisopropylfluorophosphate, as evidenced by the incorporation of 2 mol of [32P]diisopropylfluorophosphate per mole of synthetase (M r = 480,000) and the fact that all the radioactivity was associated with the isolated thioesterase. These results indicate that there are two copies of the thioesterase per mole of synthetase or one copy of the enzyme per 240,000-mol. wt. subunit.  相似文献   

7.
8.
Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, acetolactate synthase (mtALS) was selected as a target enzyme to combat M. tuberculosis. In this work, the three-dimensional molecular model of the hypothetical structure for the ALS catalytic subunit of M. tuberculosis was elucidated by homology modelling. In addition, the orientations and binding affinities of sulfonylurea inhibitors with the new structure was investigated. Our findings could be helpful for the design of new, more potent mtAHAS inhibitors.  相似文献   

9.
We have performed molecular docking on quinazoline antifolates complexed with human thymidylate synthase to gain insight into the structural preferences of these inhibitors. The study was conducted on a selected set of one hundred six compounds with variation in structure and activity. The structural analyses indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. In this study, fast flexible docking simulations were performed on quinazoline antifolates derivatives as human thymidylate synthase inhibitors. The results indicated that the quinazoline ring of the inhibitors forms hydrophobic contacts with Leu192, Leu221 and Tyr258 and stacking interaction is conserved in complex with the inhibitor and cofactor.  相似文献   

10.
Fatty acid biosynthesis is an attractive target for anti-cancer therapeutics. The ocular cancer, retinoblastoma cells were treated with fatty acid synthase (FASN) enzyme inhibitors: cerulenin, triclosan and orlistat. The IC50 and dose-dependent sensitivity of cancer cells to FASN inhibitors decrease in biologic enzyme activity, and cell morphology alterations were analysed. Molecular interactions of enzyme-inhibitor complexes were studied by molecular modelling and docking simulations. The crystal structures of ketoacyl synthase (PDB ID:3HHD) (cerulenin) and thioesterase (PDB ID:2PX6) (orlistat) domains of human FASN were utilized for docking, while for the non-crystallised human FASN enoyl reductase domain (triclosan), homology model was built and used for docking. All three inhibitors showed significant binding energy indicating stable complex formation with their respective FASN subunits. The predicted Ki value of the FASN inhibitors corroborated well with their corresponding anti-cancer effects.  相似文献   

11.
The three-dimensional (3D) model of the human fatty acid amide hydrolase (hFAAH) was constructed based on the crystal structure of the rat FAAH (PDB code 1MT5) in complex with a substrate using Modeller9v2 program. With the aid of molecular mechanics and molecular dynamics method, the last model was obtained and further assessed by Profile-3D, Prosa2003 and Procheck, which confirms that the refined model is reliable. Furthermore, the docking results of propofol and its structural analogue into the active site of hFAAH indicate that 2,6-di-sec-butyl phenol is a more preferred ligand than others, which is in good agreement with the experimental results. From the docking studies, we also suggest that Phe192, Ile238, Thr377, Leu380, Phe381, Phe388 and Leu404 in the hFAAH are seven important determinant residues in binding as they have strong van der Waal interactions with the ligand.  相似文献   

12.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

13.
Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.  相似文献   

14.
Kumar S 《Bioinformation》2011,7(7):360-365
Cytochromes P450 (CYPs) are a super family of heme-containing enzymes well-known for their monooxgenase reaction. There are 57 CYP isoenzymes found in human which exhibit specific physiological functions. Thirteen members of this super family are classified as "orphan" CYP because of their unknown enzymatic functions. CYP4V2 is found to be a potential drug target for Bietti crystalline corneoretinal dystrophy (BCD). However, three-dimensional structure, the active site topology and substrate binding modes of CYP4V2 remain unclear. In this study, the three-dimensional model of CYP4V2 was constructed using the homology modeling method. Four possible fatty acid substrates namely, caprylic, lauric, myrisitc and palmitic acids were optimized and evaluated for drug likeness using Lipinski's rule of five. Further, these substrates were docked into active sites of CYP4V2 and several key residues responsible for substrate binding were identified. These findings will be helpful for the structure-based drug design and detailed characterization of the biological roles of CYP4V2.  相似文献   

15.
Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-A-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.  相似文献   

16.
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.  相似文献   

17.
Paclitaxel (Taxol®) binding to the conformation of human serum albumin assumed in the presence of long-chain fatty acids was studied by automated docking. Reduced binding affinities at both the primary and secondary sites were predicted, compared to those characterizing the interaction with the fatty acid-free protein. The baccatin core of paclitaxel was found to play a more important role than its C13 side chain in determining the ligand binding mode as well as in contributing to the overall binding energy at the primary site.  相似文献   

18.
19.
在I型聚酮合成酶(polyketide synthase,PKS)中,硫酯酶结构域(Thioesterase,TE)负责将聚酮长链从PKS上水解下来,并协助环化为大环内酯环.分别将红霉素TE、ACP6-TE和苦霉素模块6(PikM6)基因转入糖多孢红霉菌KR6突变体中表达,仅PikM6显著促进酮内酯类化合物的合成,表明TE只有融合于模块中才能充分发挥硫酯酶的功能.  相似文献   

20.
《Chirality》2017,29(1):10-13
The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号