首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugal Transfer of Genetic Information in Group N Streptococci   总被引:18,自引:34,他引:18       下载免费PDF全文
Streptococcus lactis strains ML3 and C2O and S. lactis subsp. diacetylactis strains DRC3, 11007, and WM4 were found to transfer lactose-fermenting ability to LM0230, an S. lactis C2 lactose-negative (Lac) derivative which is devoid of plasmid deoxyribonucleic acid (DNA). Lactose-positive streptomycin-resistant (Lac+ Strr) recombinants were found when the Lac+ Strs donor was mixed with Lac Strr LM0230 in solid-surface matings. Transduction and transformation were ruled out as the mechanism of genetic exchange in strains ML3, DRC3, 11007, and WM4, nor was reversion responsible for the high number of Lac+ Strr recombinants. Furthermore, chloroform treatment of the donor prevented the appearance of recombinants, indicating that transfer of lactose-fermenting ability required viable cell-to-cell contact. Strain C2O demonstrated transduction as well as conjugation. Transfer of plasmid DNA during conjugation for all strains was confirmed by demonstrating the presence of plasmid DNA in the transconjugants by using agarose gel electrophoresis. In some instances, a cryptic plasmid was transferred in conjunction with the lactose plasmid by using strains DRC3, 11007, and WM4. In S. lactis C2 × LM0230 matings, the Strr marker was transferred from LM0230 to C2, suggesting conjugal transfer of chromosomal DNA. The results confirm conjugation as another mechanism of genetic exchange occurring in dairy starter cultures.  相似文献   

2.
Transformation of Streptococcus lactis Protoplasts by Plasmid DNA   总被引:19,自引:16,他引:3       下载免费PDF全文
Polyethylene glycol-treated protoplasts prepared from Streptococcus lactis LM3302, a lactose-negative (Lac) derivative of S. lactis ML3, were transformed to lactose-fermenting ability by a transductionally shortened plasmid (pLM2103) coding for lactose utilization.  相似文献   

3.
Curing and genetic transfer experiments showed that lactose-fermenting ability (Lac+) and the ability to produce mucoidness in milk cultures (Muc+) in Streptococcus cremoris MS were coded on plasmids. The Lac+ phenotype was associated with a 75.8-megadalton plasmid, pSRQ2201. The Muc+ phenotype was associated with a 18.5-megadalton plasmid, pSRQ2202. The Lac plasmid, pSRQ2201, was first conjugatively transferred from S. cremoris MS to LacS. lactis ML-3/2.2. Later, the Muc plasmid, pSRQ2202, was conjugatively transferred from Lac Muc+S. cremoris MS04 to Lac+ nonmucoid S. lactis transconjugant ML-3/2.201. Subsequently, pSRQ2201 and pSRQ2202 were cotransferred from Lac+ Muc+S. lactis transconjugant ML-3/2.202 to Lac, nonmucoid, malty S. lactis 4/4.2 and S. lactis subsp. diacetylactis SLA3.25. Transconjugants showing pSRQ2201 were Lac+; those containing pSRQ2202 were Muc+. With the transfer of pSRQ2202, the transconjugants S. lactis ML-3/2.202 and S. lactis subsp. diacetylactis SLA3.2501 not only acquired the Muc+ phenotype but also resistance to bacteriophages, which were lytic to the respective parent strains S. lactis ML-3/2.201 and S. lactis subsp. diacetylactis SLA3.25.  相似文献   

4.
Temperate phage was induced from Streptococcus cremoris C3 and morphologically characterized by high-resolution electron micrographic techniques. Interspecies genetic transfer of lactose-fermenting ability by the temperate phage was demonstrated, using two lactose-negative (Lac) S. lactis strains as recipients. Plasmid transfer was confirmed by agarose gel electrophoresis. Transductant plasmid profiles were of three types—those containing no visible plasmid deoxyribonucleic acid, those possessing a 23-megadalton (Mdal) plasmid, and those containing a 23-Mdal plasmid and a 30-Mdal plasmid. A Lac+ transductant could serve as a donor of the lac determinants during solid-surface matings. These results add to previously published reports of inter- and intraspecies genetic transfer in dairy starter cultures.  相似文献   

5.
Agar surface conjugal matings were used to introduce heat-sensitive phage resistance (Hsp+) determinants carried on the conjugal plasmid pTR2030 into Streptococcus cremoris KH, HP, 924, and TDM1. Lactose-fermenting (Lac+) transconjugants were selected from matings of Lac variants of S. cremoris KH, HP, 924, and TDM1 with Streptococcus lactis ME2 or a high-frequency donor, S. lactis T-EK1 (pTR1040, Lac+; pTR2030, Hsp+). For all of the S. cremoris strains examined, select Lac+ transconjugants were completely resistant to plaquing by their homologous lytic phages. In all cases the plaquing efficiencies were less than 10−9. Acquisition of a 30-megadalton plasmid (pTR2030) in the S. cremoris phage-resistant transconjugants was demonstrated by direct plasmid analysis, by hybridization with 32P-labeled probes, or by conjugal transfer of pTR2030 out of the phage-resistant transconjugants into a plasmid-cured recipient, S. lactis LM2302. Acid production, coagulation ability, and proteolytic activity of phage-resistant transconjugants in milk were comparable to those of their phage-sensitive parents. Further, S. cremoris phage-resistant transconjugants were not attacked by phage in starter culture activity tests, which included a 40°C incubation period. The results demonstrated that phage resistance determinants on pTR2030 could be conjugally transferred to a variety of S. cremoris strains and confer resistance to phage under conditions encountered during cheese manufacture. Phage-resistant transconjugants of S. cremoris M43 and HP were also constructed without the use of antiblotic markers to select conjugal recipients from mating mixtures.  相似文献   

6.
It has been previously observed that loss of plasmid pGK4101 occurred concomitantly with loss of lactose-fermenting ability in Streptococcus lactis subsp. diacetylactis 18-16. Transfer of this 41-megadalton plasmid to LM0230, a lactosenegative (Lac) strain of S. lactis, required cell-to-cell contact and resulted in a conversion of LM0230 to the Lac+ phenotype. This confirms the linkage of lactose-fermenting ability to the 41-megadalton plasmid in S. lactis subsp. diacetylactis and, in addition, demonstrates transfer by a process resembling conjugation in the group N streptococci.  相似文献   

7.
Eight of 40 strains of Streptococcus lactis and S. lactis subsp. diacetylactis were able to conjugally transfer a degree of phage insensitivity to Streptococcus lactis LM0230. Transconjugants from one donor strain, S. lactis subsp. diacetylactis 4942, contained a 106-kilobase (kb) cointegrate plasmid, pAJ1106. The plasmid was conjugative (Tra+) and conferred phage insensitivity (Hsp) and lactose-fermenting ability (Lac) in S. lactis and Streptococcus cremoris transconjugants. The phage resistance mechanism was effective against prolate- and small isometric-headed phages at 30°C. In S. lactis transconjugants, the phage resistance mechanism was considerably weakened at elevated temperatures. A series of deletion plasmids was isolated from transconjugants in S. cremoris 4854. Deletion plasmids were pAJ2074 (74 kb), Lac+, Hsp+, Tra+; pAJ3060 (60 kb), Lac+, Hsp+; and pAJ4013 (13 kb), Lac+. These plasmids should facilitate mapping Hsp and tra genes, with the aim of constructing phage-insensitive strains useful to the dairy industry.  相似文献   

8.
Lactose-fermenting mucoid (Lac+ Muc+) variants of plasmid-free Streptococcus lactis subsp. lactis MG1614 were obtained by protoplast transformation with total plasmid DNA from Muc+S. lactis subsp. cremoris ARH87. By using plasmid DNA from these variants for further transformations followed by novobiocininduced plasmid curing, Lac Muc+ MG1614 strains containing only a single 30-megadalton plasmid could be constructed. This plasmid, designated pVS5, appeared to be associated with the Muc+ phenotype.  相似文献   

9.
The conjugative transposon Tn919, originally isolated in Streptococcus sanguis FC1, is capable of low-frequency transfer (10−7 and 10−8 per recipient) on membrane filters to a wide number of streptococcal recipients including the industrially important lactic streptococci. The introduction of pMG600 (Lac+ Lax; a lactose plasmid capable of conjugative transfer at high frequencies and which, in certain hosts, confers an unusual clumping phenotype) into a Streptococcus lactis CH919 donor, generating S. lactis CH001, resulted in a significant improvement in the transfer frequency of Tn919 to S. lactis CK50 (1.25 × 10−4 per recipient). In addition, these matings could be performed on agar surfaces, allowing the recovery of a greater number of recipients than with filter matings. Tn919 also transferred at high frequency to S. lactis subsp. diacetylactis 18-16S but not to Streptococcus cremoris strains. Insertion in 18-16S transconjugants generated from filter matings with an S. lactis CH919 donor was random, occurring at different sites on the chromosome and also in plasmid DNA. Thus, the conditions necessary for the practical exploitation of Tn919 in the targeting and cloning of genes from a member of the lactic streptococci, namely, high-frequency delivery and random insertion in host DNA, were achieved.  相似文献   

10.
Protoplasts of plasmid-freeLactococcus lactis subsp.lactis LM 0230 and PC4 strains were cotransformed successfully with the plasmid pools ofL. lactis subsp.lactis 484, a lactosefermenting (Lac+), lactococcin-producing (Lap+), lactococcin-resistant (Lapr), sucrosefermenting (Suc+) wild strain, its derivatives, and pGB 301 erythromycin resistance plasmid (Eryr) at the frequencies of 104 transformants/g of DNA. PC4 protoplasts were transformed at slightly lower frequencies that LM 0230 protoplasts when the same plasmid combinations were used for transformation. Agarose gel electrophoresis of plasmids from three groups of transformants, namely, LacLapEryr, Lac+Suc+Lap+LaprEryr, and LacSuc+Lap+ LaprLapr, confirmed that 2.0 and 65.0 megadalton (MDa) plasmids carried genes for Suc+Lap+Lapr and Lac+ phenotypes respectively. The protoplasts could be transformed with low-molecular-weight 2.0 MDa Lap plasmid at a relatively higher frequency than those with high-molecular-weight 65.0 MDa Lac plasmid. All the transformants resembled parent culture 484 in terms of lactic acid production (0.810–0.840%), milk curdling time (6 h), and lactococcin activity (7–12 mm, zone of inhibition) againstListeria monocytogenes, Salmonella typhi, andStaphylococcus aureus. The plasmids and their respective phenotypes in PC4 transformants were genetically more stable than those of LM 0230 protoplasts. The marker plasmid pGB 301 disappeared more frequently from the transformants when present in association with the lowmolecular-weight, high-copy-number 2.0 MDa plasmid, thereby suggesting the incompatibility of these two plasmids.  相似文献   

11.
Stabilization of Lactose Metabolism in Streptococcus lactis C2   总被引:16,自引:9,他引:7       下载免费PDF全文
The integration of the lactose plasmid from lactic streptococci into the host chromosome could stabilize this trait for dairy fermentations. Sixty lactose-positive (Lac+) transductants of lactose- and proteinase-negative (Lac Prt) LM0220 were induced for temperature phage by UV irradiation or mitomycin C. Four of the transductants, designated KB18, KB21, KB54, and KB58, yielded lysates demonstrating less than one Lac+ transductant per 0.2 ml of phage lysate. Successive transferring in the presence of acriflavine did not yield Lac segregants from KB18, KB21, KB54, or KB58, whereas Streptococcus lactis C2 (parent culture) and three other Lac+ transductants showed 12 to 88% conversion from Lac+ to Lac within 6 to 10 repetitive transfers. When grown in continuous culture, KB21 did not show any Lac variants in 168 h, while S. lactis C2 had 96% conversion from Lac+ to Lac in 144 h. Agarose gel electrophoresis of plasmid DNA isolated from KB18, KB21, KB54, and KB58 revealed that the lactose plasmid, pLM2103, normally present in Lac+ transductants, was missing. This suggested integration of the transferred lactose plasmid into the chromosome. In contrast to phage lysates induced from S. lactis C2, which exhibited an exponential decrease in the number of Lac+ transductants after exposure to small doses of UV irradiation, the transduction frequency for lactose metabolism was stimulated by UV irradiation of lysates from KB58. The latter indicated chromosomal linkage for lac and that integration of the lactose genes plasmid into the chromosome had occurred.  相似文献   

12.
A series of reactions between phages, sensitive hosts, and transconjugants where the sensitivity of small isometric-, large isometric-, and prolate-headed phages to pTR2030-induced phage resistance was evaluated in Streptococcus lactis and Streptococcus cremoris strains. Phage-resistant transconjugants were constructed in the desired host by conjugal transfer of lactose-fermenting ability (Lac+, pTR1040) and phage resistance (Hsp+, pTR2030) from S. lactis TEK1. S. lactis and S. cremoris transconjugants harboring pTR2030 were resistant to all small isometric-headed phages examined. In contrast, prolate- and large isometric-headed phages were either not inhibited in the pTR2030 transconjugants or exhibited a reduction in plaque size without a reduction in the efficiency of plaquing. Small isometric-headed phages subject to pTR2030 induced inhibition shared no significant DNA homology with pTR2030, suggesting that phage immunity genes are not harbored on the plasmid or responsible for resistance. The general effectiveness of pTR2030 against small isometric-headed phages was highly significant since these are the phages which have been isolated most commonly from dairy fermentation plants.  相似文献   

13.
Plasmid pAJ1106 and its deletion derivative, plasmid pAJ2074, conferred lactose-fermenting ability (Lac) and bacteriophage resistance (Hsp) at 30°C to Lac proteinase (Prt)-negative Lactococcus lactis subsp. lactis and L. lactis subsp. lactis var. diacetylactis recipient strains. An additional plasmid, pAJ331, isolated from the original source strain of pAJ1106, retained Hsp and conjugative ability without Lac. pAJ331 was conjugally transferred to two L. lactis subsp. lactis and one L. lactis subsp. cremoris starter strains. The transconjugants from such crosses acquired resistance to the phages which propagated on the parent recipient strains. Of 10 transconjugant strains carrying pAJ1106 or one of the related plasmids, 8 remained insensitive to phages through five activity test cycles in which cultures were exposed to a large number of industrial phages at incubation temperatures used in lactic casein manufacture. Three of ten strains remained phage insensitive through five cycles of a cheesemaking activity test in which cultures were exposed to approximately 80 different phages through cheesemaking temperatures. Three phages which propagated on transconjugant strains during cheesemaking activity tests were studied in detail. Two were similar (prolate) in morphology and by DNA homology to phages which were shown to be sensitive to the plasmid-encoded phage resistance mechanism. The third phage was a long-tailed, small isometric phage of a type rarely found in New Zealand cheese wheys. The phage resistance mechanism was partially inactivated in most strains at 37°C.  相似文献   

14.
Nine industrially important strains of Streptococcus cremoris (HP, AM2, ML1, WC, C3, R1, E8, KH, and Wg2) were shown to possess a diversity of plasmid molecules. Molecular weights of plasmids were determined from their relative mobilities after agarose gel electrophoresis and via electron microscopy. To illustrate the varied plasmid sizes, strain HP contained plasmids of 26, 18, 8.5, 3.3, and 2 megadaltons (Mdal); strain ML1 contained plasmids of 29, 18, 9, 4, 2.2, and 1.8 Mdal; and strain AM2 had plasmids of 42, 27, 16, and 8.4 Mdal. The numbers of plasmids observed in the other strains were 6, 5, 5, 7, 5, and 4 for C3, E8, KH, R1, WC, and Wg2, respectively. A spontaneous proteinase-negative (Prt) mutant of HP was missing the 8.5-Mdal plasmid, which suggests that in this strain proteinase activity could be linked to this particular plasmid. A lactose-negative (Lac) Prt mutant of ML1 lacked the 2.2-Mdal plasmid. Under the conditions employed, antibiotic sensitivity and heavy-metal susceptibility did not correlate with the missing plasmid in Prt HP or in the Lac Prt ML1. Curing experiments with AM2, using acridine dyes and elevated temperatures, did not yield Lac variants. AM2 was also cultured at high dilution rates in a chemostat for 168 h by using a buffered milk or lactic broth at 18 or 32°C with no selection of Lac derivatives. The inability to obtain Lac variants under conditions known to facilitate plasmid elimination suggests that lactose metabolism is not plasmid-mediated in AM2.  相似文献   

15.
Lactococcus lactis subsp.lactis 484 produced a proteinaceous antibacterial substance designated as lactococcin capable of inhibiting members of theLactococcus group,Bacillus cereus, Staphylococcus aureus, andSalmonella typhi. Growth of this culture in the presence of 2–30 g/ml of ethidium bromide or acriflavin or novobiocin, and at elevated temperature (39° and 41°C), could not produce any lactococcin-negative (Lap) variants. However, protoplast-induced curing with lysozyme was successful in developing Lap derivatives. Two types of cured derivatives, namely Lac Lap+ and Lac Lap, were obtained. Lap variants were also lacking sucrose-fermenting ability (Suc+) and lactococcin resistance (Lapr). The lactose-negative (Lac) variants and Lap+ were clearly lacking the largest (65 Md) plasmid. However, Lap Suc Laps variants lost a 2 Md plasmid.L. lactis subsp.lactis 484 transferred lactose-fermenting ability as well as Lap+ Suc+ Lapr phenotypes simultaneously toL. lactis subsp.lactis LM 2306 and LM 0230 by surface mating at a frequency of 10–4 and 10–1 per donor respectively. However, cured Lac Lap transconjugants could not transfer Lac+ Lap+ Suc+ Lapr phenotypes to any of these recipient strains. Our results indicate that Lac+ and Lap+ Suc+ Lapr phenotypes are associated with 65 Md and 2 Md plasmids respectively. Conjugal transfer of 2 Md plasmid is possible only in the presence of a conjugative 65 Md plasmid.  相似文献   

16.
Two strains of mesophilic lactic acid bacteria, Streptococcus cremoris AM2 and Leuconostoc lactis CNRZ 1091, were grown in pure and mixed cultures in the presence or absence of citrate (15 mM) and at controlled (pH 6.5) or uncontrolled pH. Microbial cell densities at the end of growth, maximum growth rates, the pH decrease of the medium resulting from growth, and the corresponding acidification rates were determined to establish comparisons. The control of pH in pure cultures had no effect on L. lactis CNRZ 1091 populations. The final populations of S. cremoris AM2, however, were at least five times higher than when the pH was not controlled (4 × 108 vs. 2 × 109 CFU · ml−1). The pH had no effect on the growth rate of either strain. That of S. cremoris AM2 (0.8 h−1) was about twice that of L. lactis CNRZ 1091. When the pH fell below 5, the growth of both strains decreased or stopped altogether. Citrate had no effect on S. cremoris AM2, while final populations of L. lactis CNRZ 1091 were two to three times higher (3 × 108 CFU · ml−1); it had no effect on the maximum growth rates of the two strains. Citrate attenuated the pH decrease of the medium and reduced the maximum acidification rate of the culture by 50%, due to the growth of S. cremoris AM2. Acidification due to L. lactis CNRZ 1091, however, was very slight. Regardless of the conditions of pH and citrate, the total bacterial population in mixed culture was lower (by 39%) than that of the sum of each pure culture. Mixed culture improved the maximum growth rate of L. lactis CNRZ 1091 (0.6 h−1) by 50%, while that of S. cremoris AM2 was unaffected. The acidification rate of the growth medium in mixed culture, affected by the presence of citrate, resulted from the development and activity of S. cremoris AM2.  相似文献   

17.
Streptococcus lactis subsp. diacetylactis strain WM4 transferred lactose-fermenting and bacteriocin-producing (Bac+) abilities to S. lactis LM2301, a lactose-negative, streptomycin-resistant (Lac- Strr), plasmid-cured derivative of S. lactis C2. Three types of transconjugants were obtained: Lac+ Bac+, Lac+ Bac-, and Lac-Bac+.S. diacetylactis WM4 possessed plasmids of 88, 33, 30, 5.5, 4.8, and 3.8 megadaltons (Mdal). In Lac+ Bac+ transconjugants, lactose-fermenting ability was linked to the 33-Mdal plasmid and bacteriocin-producing ability to the 88-Mdal plasmid. Curing the 33-Mdal plasmid from Lac+ Bac+ transconjugants resulted in loss of lactose-fermenting ability but not bacteriocin-producing ability (Lac- Bac+). These strains retained the 88-Mdal plasmid. Curing of both plasmids resulted in a Lac- Bac- phenotype. The Lac+ Bac- transconjugant phenotype was associated with a recombinant plasmid of 55 or 65 Mdal. When these transconjugants were used as donors in subsequent matings, the frequency of Lac transfer was about 2.0 X 10(-2) per recipient plated, whereas when Lac+ Bac+ transconjugants served as donors, the frequency of Lac transfer was about 2.0 X 10(-5) per recipient plated. Also, Lac- Bac+ transconjugants were found to contain the 88-Mdal plasmid. The data indicate that the ability of WM4 to produce bacteriocin is linked to an 88-Mdal conjugative plasmid and that lactose-fermenting ability resides on a 33-Mdal plasmid.  相似文献   

18.
Lactose- and proteinase-negative (Lac Prt) mutants of Streptococcus lactis C10, ML3, and M18 were isolated after treatment with ethidium bromide. The Lac Prt mutants of C10 were missing a 40-megadalton plasmid. A 33-megadalton plasmid was absent in the ML3 mutants, and the M18 variants lacked a 45-megadalton plasmid. The results suggest a linkage of these metabolic traits to the respective plasmids. The possible complexity of the interrelationship between lactose metabolism and proteinase activity is presented.  相似文献   

19.
Summary Conjugation between lactose-fermenting (Lac+)Streptococcus lactis C2 and Lac Leuconostoc cremoris CAF7 was performed. The frequency of Lac+ transfer was 1.5 · 10–2 per donor cell. Lac+ Leuconostoc transconjugants could ferment lactose significantly faster than wild-type cells. When grown in litmus milk fortified with 0.2% yeast extract, Lac+ transconjugants reached pH 4.68 within 24 h at 30°C and produced diacetyl. The identity of the transconjugants asLeuconostoc derivatives was confirmed by their resistance to phage c2 and to vancomycin (>500 g/ml), and by growth on selective medium containing azide. Plasmid profiles of 10 transconjugants showed two unique patterns. A novel enlarged plasmid was found. Southern blot hybridization revealed some homology with the 30 Md Lac+ plasmid of donor, recipient and the transconjugants, as well as with some of the remaining plasmids of the donor.Technical Paper No. 7953, Oregon Agricultural Experiment Station.  相似文献   

20.
Lactose-positive (Lac+) transconjugants resulting from matings between Streptococcus lactic ML3 and S. lactis LM2301 possess a single plasmid of approximately 60 megadaltons (Mdal) which is nearly twice the size of the lactose plasmid of the donor. The majority of these Lac+ transconjugants aggregated in broth and were able to transfer lactose-fermenting ability at a frequency higher than 10(-1) per donor on milk agar plates or in broth. Lac+ transconjugants which did not clump conjugated at a much lower frequency. Lactose-negative derivatives of Lac+ clumping transconjugants did not aggregate in broth and were missing the 60-Mdal plasmid. The ability to aggregates in broth was very unstable. Strains could lose the ability to clump but retain lactose-fermenting ability. The majority of these Lac+ nonclumping derivatives of clumping transconjugants contained a plasmid of approximately 33 Mdal, the size of the lactose plasmid of the original donor ML3. These strains transferred lactose-fermenting ability at a frequency of approximately 10(-6) per donor, resulting in both Lac+ clumping transconjugants which contained a 60-Mdal plasmid and Lac+ nonclumping transconjugants which possessed a 33-Mdal plasmid. Our results suggest that the genes responsible for cell aggregation and high-frequency conjugation are on the segment of deoxyribonucleic acid which recombined with the 33-Mdal lactose plasmid in S. lactis ML3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号