首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
Serratia marcescens is an opportunistic pathogen responsible for causing nosocomial infections, corneal ulcer, necrotizing fasciitis, cellulites, and brain abscess. Alkaline phosphatase (APase) is believed to play an important role in the survival of several intracellular pathogens and their adaptation. We have studied the effect of low phosphate concentration and acid pH on the APase activities of S. marcescens. In a low phosphate medium, some strains of S. marcescens synthesize two different types of APases, a constitutive (CAPase) and an inducible (IAPase). Both the CAPase and IAPase isoenzymes completely lost their enzyme activities at pH 2.3, within 10 min of incubation at 0°C. Acid-treated IAPase isoenzymes I, II, III, and IV solutions when adjusted to pH 7.8 showed recovery of 70%, 52%, 72%, and 60% of the lost activities, respectively. When the pH of the CAPase reaction mixture was raised to pH 7.8, the enzyme activity regained only 5% of its initial activity. Variations in protein concentration also affected the pH-dependent reversible changes of the IAPase activity. The higher the protein concentration, the faster the inactivation of enzyme activity observed at acidic pH at 0°C. Conversely, the lower the protein concentration, the higher the rate of reactivation of enzyme activity observed for IAPase at alkaline pH. Protein interaction studies revealed a lack of similarity between CAPase and IAPase, suggesting separate genetic origin of these potentially virulent genes of S. marcescens. Received: 4 December 2001 / Accepted: 7 January 2002  相似文献   

2.
Phosphofructokinase 2 and fructose 2,6-bisphosphatase extracted from either chicken liver or pigeon muscle co-purified up to homogeneity. The two homogeneous proteins were found to be dimers of relative molecular mass (Mr) close to 110,000 with subunits of Mr 54,000 for the chicken liver enzyme and 53,000 for the pigeon muscle enzyme. The latter also contained a minor constituent of Mr 54,000. Incubation of the chicken liver enzyme with the catalytic subunit of cyclic-AMP-dependent protein kinase in the presence of [gamma-32P]ATP resulted in the incorporation of about 0.8 mol phosphate/mol enzyme. Under similar conditions, the pigeon muscle enzyme was phosphorylated to an extent of only 0.05 mol phosphate/mol enzyme and all the incorporated phosphate was found in the minor 54,000-Mr constituent. The maximal activity of the native avian liver phosphofructokinase 2 was little affected by changes of pH between 6 and 10. Its phosphorylation by cyclic-AMP-dependent protein kinase resulted in a more than 90% inactivation at pH values below 7.5 and in no or little change in activity at pH 10. Intermediary values of inactivation were observed at pH values between 8 and 10. Muscle phosphofructokinase 2 had little activity at pH below 7 and was maximally active at pH 10. Its partial phosphorylation resulted in a further 25% decrease of its already low activity measured at pH 7.1 and in a negligible inactivation at pH 8.5. Phosphoenolpyruvate and citrate inhibited phosphofructokinase 2 from both origins non-competitively. The muscle enzyme and the phosphorylated liver enzyme displayed much more affinity for these inhibitors than the native liver enzyme. Fructose 2,6-bisphosphatase from both sources had about the same specific activity but only the chicken liver enzyme was activated about twofold upon incubation with ATP and cyclic-AMP-dependent protein kinase. All enzyme forms were inhibited by fructose 6-phosphate and this inhibition was released by inorganic phosphate and by glycerol 3-phosphate. Both liver and muscle fructose 2,6-bisphosphatases formed a 32P-labeled enzyme intermediate when incubated in the presence of fructose 2,6-[2-32P]bisphosphate.  相似文献   

3.
Alkaline phosphatase (APase) isoenzymes produced by different strains of Serratia marcescens were examined. Variation of isoenzyme patterns with respect to number and their mobilities in starch gels after electrophoresis were observed. Ten strains gave a 1-isoenzyme pattern with 5 different mobilities; 7 strains gave a 2-isoenzyme pattern with 3 different mobilities; 9 strains gave a 3-isoenzyme pattern with 5 different mobilities; and 3 strains gave a 4-isoenzyme pattern. Three strains synthesized two electrophoretically distinct APases in low phosphate medium. A high concentration of inorganic phosphate induced the synthesis of one of these APase isoenzymes.  相似文献   

4.
5.
1. The kinetics of inhibition of calf-intestinal alkaline phosphatase by inorganic phosphate, fluorophosphate, inorganic pyrophosphate, beta-glycerophosphate and adenosine 5'-triphosphate in the range pH8-10 were investigated. The reference substrate was 4-methylumbelliferyl phosphate. 2. The inhibitions were ;mixed' in that both K(m) and V were affected, but the competitive element was by far the stronger. 3. In each case the pH profile for the competitive K(i) was similar to the pH profile for K(m). Since the K(m) and K(i) values both change 100-fold over the pH range 8-10, it is concluded that the inhibitors compete with the substrate for the same active site. 4. It was also found that the enzyme preparation hydrolysed fluorophosphate, pyrophosphate and adenosine 5'-triphosphate as readily as it hydrolysed 4-methylumbelliferyl phosphate and beta-glycerophosphate. Each pH-activity curve, however, had a different shape, but with the exception of pyrophosphate the activity approached the same maximum value at high pH. 5. Attempts to separate the phosphomonoesterase and pyrophosphatase activities by column chromatography were not successful, and the results of other experiments listed suggest that the two activities are a property of the same enzyme. 6. The effect of Mg(2+) ions is briefly mentioned: the phosphomonoesterase activity is enhanced whereas the pyrophosphatase and adenosine triphosphatase activities are strongly inhibited in the presence of excess of Mg(2+) ions.  相似文献   

6.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

7.
The aim of this study was to assess the effect of aluminum on the in vitro activity of acid phosphatases (APases) of four potato clones, Macaca and Dakota Rose (Al-sensitive), and SMIC148-A and Solanum microdontum (Al-tolerant), grown in vitro, in hydroponics or in a greenhouse. The enzyme was assayed in vitro in the presence of 0, 1.85, 3.70, 5.55 and 7.40 mM Al. In plantlets grown in vitro, root APases were inhibited by Al in all clones, while shoot APases were inhibited by Al in S. microdontum and Dakota Rose and increased in Macaca at all Al concentrations. In plantlets grown in hydroponics, root APases increased in Macaca at 1.85 mM Al, whereas decreased at all Al levels in S. microdontum. In greenhouse plantlets, root APases decreased at 7.40 mM Al in S. microdontum and SMIC148-A, and at 3.70, 5.55 and 7.40 mM Al in Dakota Rose. Shoot APases decreased in Macaca and SMIC148-A. Conversely, in Dakota Rose, APases increased at 1.85 and 3.70 mM Al. These results show that the effect of Al toxicity on in vitro APase activity depends not only on Al availability but also on the plant organ, genetic background, and the growth conditions. Therefore, it suggests that acid phosphatases activity assessed in vitro might not be a good parameter to validate the screening for adaptation of potato clones to Al toxicity.  相似文献   

8.
Phosphofructokinase from oyster (Crassostrea virginica) adductor muscle occurs in a single electrophorectic form at an activity of 8.1 mumol of product formed per minute per gram wet weight. The enzyme was purified to homogeneity by a novel method involving extraction in dilute ethanol and subsequent precipitation with polyethylene glycol. Oyster adductor phosphofructokinase has a molecular weight of 3400000 +/- 20000 as measured by Sephadex gel chromatography. Mg2+ or Mn2+ can satisfy the divalent ion requirement while ATP, GTP, or ITP can serve as phosphate donors for the reaction. Oyster adductor phosphofructokinase displays hyperbolic saturation kinetics with respect to all substrates (fructose 6-phosphate, ATP, and Mg2+) at either pH 7.9 OR PH 6.8. The Michaelis constant for fructose 6 phosphate at pH 6.8, the cellular pH of anoxic oyster tissues, is 3.5 mM. In the presence of AMP, by far the most potent activator and deinhibitor of the enzyme, this drops to 0.70 mM. Many traditional effectors of phosphofructokinase including citrate, NAD(P)H,Ca2+, fructose 1,6-bisphosphate, 3-phosphoglycerate, ADP, and phosphoenolpyruvate do not alter enzyme activity when tested at their physiological concentrations. Monovalent ions (K +, NH4+) are activators of the enzyme. ATP and arginine phosphate are the only compounds found to inhibit the adductor enzyme. The inhibitory action of both can be reversed by physiological concentrations of AMP(0.2- 1.0mM) and to a lesser extent by high concentrations of Pi (20 mM) and adenosine 3' :5'-monophosphate (0.1 mM). The two inhibitors exhibit very different pH versus inhibition profiles. The Ki (ATP) decreases from 5.0 mM to 1.3 mM as the pH decreases from 7.9 to 6.8, whereas the Ki for arginine phosphate increases from 1.3 mM to 4.5 mM for the same pH drop. Of all compounds tested, only AMP, within its physiological range, activated adductor phosphofructokinase significantly at low pH values. The kinetic data support the proposal that arginine phosphate, not ATP or citrate, is the most likely regulator of adductor phosphofructokinase in vivo under aerobic, high tissue pH, conditions. In anoxia, the depletion of arginine phosphate reserves and the increase in AMP concentrations in the tissue, coupled with the increase in the Ki for arginine phosphate brought about by low pH conditions, serves to activate phosphofructokinase to aid maintenance of anaerobic energy production.  相似文献   

9.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

10.
Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30°C at a pH of 5.0.  相似文献   

11.
F Briganti  W P Fong  D S Auld  B L Vallee 《Biochemistry》1989,28(13):5374-5379
Freezing (-78 degrees C) and thawing (25 degrees C) a heterodimeric human alcohol dehydrogenase class I isozyme in the presence of 0.1 M sodium phosphate/0.1 mM DTT, pH 7.0, and the subsequent separation of the scrambled isozymes by HPLC are used to prepare homodimers from heterodimers, with recovery of enzyme activity ranging from 80 to 95%. The ratio of the three isozymes obtained from a heterodimer follows the binomial distribution of 1:2:1, indicating random reassociation of the two subunits. The physical and enzymatic properties of the reassociated isozymes are the same as those obtained directly from human liver preparations. The nature of subunit-subunit interactions of human ADH class I isozymes is examined by optimizing the conditions required for the formation of the new dimers "in vitro". The effect of a number of reagents previously used in the reversible dissociation of dehydrogenases is investigated. The coenzyme NAD+ is a potent inhibitor of the dissociation of dimers during the freeze/thaw procedure. The presence of sodium phosphate in the enzyme solution is essential during the freezing and thawing experiment. No appreciable dissociation/reassociation occurs in TES, HEPES, or even potassium phosphate. The reversible dissociation is due primarily to the decrease in pH because of the low solubility of Na2HPO4 at low temperatures. The reassociation occurs after thawing in a temperature-dependent process. There is no reactivation if the enzyme is incubated at 0 degrees C after thawing, while at 25 degrees C high recovery in activity is achieved in a time period ranging from 15 to 90 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During the course of purification of UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine synthetase, we observed a marked stimulation of the enzymatic activity in the presence of phosphate ions. This activation effect was studied with enzyme purified 979-fold from Bacillus sphaericus. Each salt tested stimulated the activity of the synthetase. The order of activation by different anions was HPO4(2-) greater than Cl- greater than SO4(2-). In every case, the potassium salt gave higher activity than the corresponding sodium salt. The activation in the presence of phosphate was quite pronounced (almost sevenfold with K2HPO4) and occurred at a relatively low concentration. The Ka for K2HPO4 was found to be 3.4 mM and the Hill coefficient was calculated to be 1.0. This would suggest that there is one phosphate-binding site per active centre. The presence of phosphate did not affect either the pH optimum of this enzyme or the optimum concentration of Mg2+ required. The presence of phosphate has little or no effect on the Km of any of the substrates. Thus, it appears that the presence of phosphate changes the enzyme conformation to a catalytically more active form. The activation of this enzyme in the presence of phosphate anion is all the more interesting because phosphate is a product of the reaction catalyzed by this enzyme.  相似文献   

13.
Properties of a highly purified mitochondrial deoxyguanosine kinase   总被引:3,自引:0,他引:3  
Deoxyguanosine kinase, purified over 6000-fold from beef liver mitochondria by means of deoxyguanosine-3'-(4-aminophenyl phosphate)-Sepharose affinity chromatography, was nearly homogeneous. It phosphorylates only deoxyguanosine and deoxyinosine among the natural nucleosides, with apparent Km values of 4.7 and 21 microM, respectively. Among nucleoside analogs tested, only arabinosylguanine (Ki = 125 microM) and 8-aza-deoxyguanosine (Ki = 450 microM) competed with deoxyguanosine. The relative molecular mass of the enzyme is 56,000, as determined by equilibrium sedimentation, and sodium dodecyl sulfate-gel electrophoresis suggests two subunits of Mr 28,000. The pH optimum for enzyme activity is 5.5, but optimum enzyme stability is seen at pH 7.0. Triton X-100 increased the stability of the enzyme markedly. ATP is the best phosphate donor at pH 5.5, but pyrimidine triphosphates such as dTTP and UTP are more efficient donors at pH 7.4. The activation energy, at pH 5.5, was estimated to be 10.9 kcal/mol. Amino acid modification experiments suggest the involvement of arginine, cysteine, and probably histidine. The inactivation of the enzyme by modification of these amino acid residues was time and pH dependent. Both substrates protected the enzyme from inactivation in every case but that of photooxidation by Rose Bengal, where only deoxyguanosine prevented inactivation.  相似文献   

14.
The enzymic activity responsible for synthesis of willardiine and isowillardiine in pea seedlings has been extracted and partially purified. Fresh tissue, pulverized in liquid-N2, was extracted in a phosphate buffer (pH 7) and subjected to fractional precipitation with ammonium sulphate. After desalting on Sephadex G-25 and concentration by ultrafiltration, the fraction containing the activity was chromatographed sequentially on DEAE-Sepharose CL-6B, DEAE-cellulose (DE 52) and Sephadex G-200. Electrophoretic separation in polyacrylamide gels was also used. A 120-fold purification was achieved but at no stage was there any indication of a separation of willardiine synthase activity from that of isowillardiine synthase. Both activities paralleled one another when the enzymic preparation was progressively denatured by subjecting it to gradually increasing temperatures. Similarly, ageing at 4° and at ?196° resulted in a parallel loss of activity. Both synthase activities were maximal at 7.8–7.9and the pH optimum curves were of closely similar shape. From the results described, it is concluded that a single enzyme of relatively low MW (ca 50 000) is responsible for the synthesis of both uracilylalanines. Studies of the alanylation of uracil using a pyridoxal-metal ion model-enzyme system are described.  相似文献   

15.
1. We have shown that the characteristic lag in cresolase activity of human skin tyrosinase at inhibitory concentration of tyrosine was absent at all pH values studied, i.e. pH 5.2, 5.7, 6.2 and 6.8, if the enzyme solubilized at low pH was used as the source of enzyme, but the same enzyme when dialysed against buffers of various pH values showed linear activity only at pH 5.2 and was not inhibited by excess tyrosine, whereas at higher pH values it exhibited a lag and inhibition by excess tyrosine. 2. However, the enzyme solubilized in buffer/detergent, pH 6.8, when dialysed against buffer of the same pH showed linear activity at pH 5.2 and non-linear activity at pH 6.8. 3. The water/detergent-solubilized enzyme from human skin melanosomes showed linear activity even at inhibitory concentrations of tyrosine at pH 5.2 and 6.8 up to 2 h, but acceleration of rate was observed after 2 h for the enzyme measured at pH 6.8. 4. After dialysis of the water/detergent-solubilized enzyme against double-glass-distilled water, it still exhibits linear activity at inhibitory concentration of tyrosines at pH 6.8 for the first 2 h, but the same enzyme when dialysed against 0.02 M-sodium phosphate buffer, pH 6.8, exhibits negligible activity up to 1/2 h, in contrast with considerable activity before dialysis during the same interval of time, but without any loss of activity at later intervals of incubation time. 5. On the basis of these results, it is concluded that the enzyme exists in at least two interconvertible forms, one without lag and inhibition by excess tyrosine and the other with lag and inhibition by excess tyrosine. These two forms are interconvertible only by gradual change in pH over a period of hours.  相似文献   

16.
An enzyme with sulfatase activity has been isolated from the granules of a rat NK leukemia cell line, CRNK-16. The enzyme has been purified from crude preparation, with a specific activity of 52 nmol/min/mg of protein, by DEAE ion exchange and Con A-Sepharose affinity chromatography, resulting in a specific activity of 230 nmol/min/mg of protein. The molecular mass of the purified enzyme was estimated to be 40 kDa by gel filtration chromatography at pH 7.4, but the enzyme had the ability to complex to molecular masses of greater than 300 kDa at low pH when crude granule extract was used as the starting sample, suggesting that it associates with other granule components. The enzyme was determined to be an arylsulfatase by its ability to (a) hydrolyze p-nitrophenyl sulfate (Km = 26.0 mM) and p-nitrocatechol sulfate (pNC sulfate) (Km = 1.1 mM) and (b) be inhibited by sulfite (Ki = 6.0 x 10(-7) M), sulfate (Ki = 1 x 10(-3) M), and phosphate (Ki = 4 x 10(-5) M) in a competitive manner. The pH optimum for enzymatic activity was determined to be 5.6. The role of this enzyme in cytolytic function was investigated by examining the effect of its substrates and inhibitors on granule- and cell-mediated lysis. pNC sulfate was shown to cause a dose-dependent inhibition of target cell lysis by isolated cytolytic granules (complete inhibition at 12.5 mM). Sulfite induced an incomplete inhibition (50% at 1 mM), whereas phosphate was essentially without inhibitory effect. Sulfate, on the other hand, altered lytic activity in a biphasic manner, inasmuch as it induced an inhibition of lysis at high concentrations and an increase of lysis at low concentrations. Cell-mediated lysis was inhibited by pNC sulfate in a dose-dependent fashion at concentrations greater than 2.5 mM, with nearly complete inhibition at 50 mM. Sulfate also altered the lytic activity by intact cells in a biphasic manner, although the effect was much less pronounced. Sulfite and phosphate caused only a 30% inhibition of lytic activity. These results suggest that the sulfatase enzyme is involved in NK cytolytic function, presumably at the lethal hit stage.  相似文献   

17.
A phosphatase from thylakoid membrane of spinach (Spinacia oleracea L. ) chloroplasts was isolated with the methods of extraction with n-ButanoL centrifugation at 100000 g for 30 min and chromatographic separation through DEAE-Cellulose (DE 52) column.The phosphatase catalyzed hydrolysis of phosphate monoesters (4-nitrophenyl phosphate). The optimal pH for enzyme catalysis was below 7. The peak rate of the enzyme reaction was obtained when it was incubated at 60℃ for 15 min. The phosphatase was inhibited by ATP and phosphate. The results from SDS-PAGE showed that the preparation of enzyme was composed of two proteins.  相似文献   

18.
M Merkx  M W Pinkse  B A Averill 《Biochemistry》1999,38(31):9914-9925
The pH dependence of the catalytic parameters k(cat) and K(M) has been determined for the Fe(III)Fe(II)- and Fe(III)Zn(II)-forms of bovine spleen purple acid phosphatase (BSPAP). The parameter k(cat) was found to be maximal at pH 6.3, and a pK(a) of 5.4-5.5 was obtained for the acidic limb of the k(cat) vs pH profile. Two different EPR spectra were detected for the phosphate complex of the mixed-valent diiron enzyme; their relative amounts depended on the pH, with an apparent pK(a) of 6. The EPR spectra of Fe(III)Fe(II)-BSPAP.PO(4) and Fe(III)Zn(II)-BSPAP.PO(4) at pH 5.0 are similar to those previously reported for Fe(III)Fe(II)-Uf.PO(4) and Fe(III)Zn(II)-Uf.PO(4) complexes at pH 5.0. At higher pH, a new Fe(III)Fe(II)-BSPAP.PO(4) species is formed, with apparent g-values of 1.94, 1.71, and 1.50. The EPR spectrum of Fe(III)Zn(II)-BSPAP does not show significant changes upon addition of phosphate up to 30 mM at pH 6.5, suggesting that phosphate binds only to the spectroscopically silent Zn(II). To determine whether the phosphate complexes were good structural models for the enzyme substrate complexes, these complexes were studied using rapid-freeze EPR and stopped-flow optical spectroscopy. The stopped-flow studies showed the absence of burst kinetics at pH 7.0, which indicates that substrate hydrolysis is rate limiting, rather than phosphate release. The EPR spectrum of Fe(III)Fe(II)-BSPAP.p-NPP is similar, but not identical, to that of the corresponding phosphate complex, both at pH 5 and pH 6.5. We propose that both phosphate and p-NPP bridge the two metal ions at low pH. At higher pH where the enzyme is optimally active, we propose that hydroxide competes with phosphate and p-NPP for coordination to Fe(III) and that both phosphate and p-NPP coordinate only to the divalent metal ion.  相似文献   

19.
The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5'-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent K(m) at 55 C and pH 7.5 for formate was 2.27 x 10(-4) M with NADP and 0.83 x 10(-4) with methyl viologen as acceptor. The apparent K(m) for NADP was 1.09 x 10(-4) M and for methyl viologen was 2.35 x 10(-3) M. NADP showed substrate inhibition at 5 x 10(-3) M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate.  相似文献   

20.
A new, very sensitive, rapid and reliable assay for guanylate cyclase has been established based on conversion of [32P]GTP to [32P]guanosine 3':5'-monophosphate and its separation on Dowex 50 and aluminium oxide columns. The optimum conditions for the assay of mouse parotid guanylate cyclase have been established and using this procedure the properties of the enzyme have been investigated. The enzyme was found in both the particulate and supernatant fractions. The particulate enzyme was activated 12-fold by Triton X-100 and the supernatant enzyme activity increased 2-fold. In the presence of detergent guanylate cyclase activity was distributed 85% in the particulate and 15% in the supernatant fractions, respectively. The particulate activity was localised in a plasma membrane fraction. Guanylate cyclase activity was also assayed in a wide variety of other tissues. In all cases enzymatic activity was found in both the particulate and supernatant fractions. The distribution varied with the tissue but only the intestinal mucosa had a greater proportion of total guanylate cyclase activity in the particulate fraction than the parotid. The two enzymes showed some similar properties. Their pH optima were pH 7.4, both enzymes were inhibited by ATP, dATP, dGTP and ITP, required Mn2+ for activity and plots of activity versus Mn2+ concentration were sigmoidal. However, in many properties the enzymes were dissimilar. The ratios of Mn2+ to GTP for optimum activity were 4 and 1.5 for the supernatant and plasma-bound enzymes, respectively. The slope of Hill plots for the supernatant enzyme with varying Mn2+ was 2. The particulate enzyme plots also had a slope of 2 at low Mn2+ concentration but at higher concentrations (above 0.7 mM) the Hill coefficient shifted abruptly to 4. Calcium ions reduced sigmoidicity of the kinetics lowering the Hill coefficient, activated the enzyme at all Mn2+ concentrations but had no effect on the Mn2+:GTP ratio with the supernatant enzyme while with the plasma membrane enzyme Ca2+ had no effect on the sigmoid form of the kinetics at low Mn2+ but prevented the shift to a greater Hill coefficient at higher Mn2+, inhibited the activity at low Mn2+ and shifted the Mn2+:GTP optimum ratio to 4. For the particulate enzyme plots of activity versus GTP concentration were sigmoid (n = 1.3), while the supernatant enzyme exhibited hyperbolic kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号