首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poor definition of pathotype variation in the rice blast fungus has historically handicapped strategies for reducing blast disease damage to the world's rice crop. We have employed a probe for a dispersed repeated DNA sequence called MGR [Hamer et al. (1989). Proc. Natl. Acad. Sci. USA 86, 9981-9985] to construct genotype-specific, EcoRl restriction fragment length profiles (MGR-DNA fingerprints) from United States field isolates of this fungus. By using a blind-test design, we demonstrated that MGR-DNA fingerprints distinguished the major pathotypes in the United States, accurately identified the pathotypes of isolates collected over a 30-year period, and defined the organization of clonal lineages within and among pathotype groups. These results resolved a lingering controversy regarding rice blast pathotype stability and illustrated new opportunities for tracking the population dynamics and evolution of this important crop pathogen.  相似文献   

2.
基于对稻瘟病菌(Pyricularia oryzae)基因文库的分析,我们找到了一套含重复顺序的克隆。其中POR6和POR7被证实具有高度的多态性并随机散布于稻瘟病菌生理小种的致病性时,可以获得可分辨的基因组特异的杂交带型。我们还分析了致病性与8个稻瘟病菌株DNA指纹图谱之间的关系,结果表明各个小种组合间的百分相似率Sxy,值与该小种组合间共同侵染的鉴别品种数目有正相关性。  相似文献   

3.
利用随机扩增多态性DNA技术(randomamplifiedpolymorphicDNA,RAPD)对广东省2001年度稻瘟病菌群体的遗传结构进行了分析。以相似性系数为0.70阈值时,可将采集于广东省三大生态稻作区、早稻和晚稻生长季节的96个菌株划分为12个遗传宗谱;其中宗谱8和9的菌株数各占总数的25%和18.8%,为优势宗谱。从稻作区来看,宗谱3和8为各个稻作区的共同宗谱;而宗谱1和2,7和11,以及9、10和12则依次是粤北、粤中和粤南稻作区的特异性宗谱。从生长季节来看,来源于早、晚季的菌株完全分属于宗谱图的上、下两个半区,彼此之间不存在共同的宗谱;而且两个优势宗谱都集中于晚季供试亚群体。结合前两次实验的结果,作者提出了如下两个假说来解释广东省稻瘟病菌群体所表现的遗传特性:一个地区或生长季节的病原菌群体,其优势宗谱所占的比例越高,该地区或生长季节病害发生就越严重;在长期的水稻栽培历史中,稻瘟病菌群体可能逐步地形成了早季宗谱(小种)和晚季宗谱(小种)的遗传分化。如何进一步验证上述两个假说是值得我们进一步探讨的重要课题。  相似文献   

4.
The fungus Pyrenophora tritici - repentis (Died.) causes tan spot, an important leaf disease of wheat worldwide. Isolates of this pathogen have been collected and characterized into eight races on the basis of their ability to produce three different host-selective toxins. The karyotype of 47 isolates was determined by pulsed field gel electrophoresis. The collection originated from different parts of the world and included genotypes from all races. A single isolate was characterized for each of races 3, 4 and 6, whereas fourteen, five, nine, five and eleven isolates were karyotyped for races 1, 2, 5, 7 and 8, respectively. The survey showed that the chromosome number of P. tritici-repentis was highly variable, with some isolates having as few as eight chromosomes, but others having 11 or more. Similarly, the genome size ranged from 25.5 to 48.0 Mb, and individual chromosome sizes ranged from 1.3 to more than 5.7 Mb. Considerable variation was observed in karyotype patterns among the P. tritici-repentis isolates tested. A total of 29 different karyotypes was identified among the 47 isolates. These chromosome level variations were as variable for isolates within a race as for isolates across races. Southern blot analysis of the 47 isolates with ToxA and ToxB probes revealed that the toxin genes were always located on different chromosomes. Furthermore, with six chromosome-specific single-copy probes, the ToxA -carrying chromosome was shown to be homologous among the Ptr ToxA-producing isolates, with a related chromosome in the non-ToxA-producing isolates, suggesting that the chromosome on which ToxA generally resides is of an essential nature. Interestingly, a molecular rearrangement involving a translocation of ToxA to a different chromosome was identified in one isolate.  相似文献   

5.
Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.  相似文献   

6.
Rice blast is the most destructive disease threatening stable rice production in rice-growing areas. Cultivation of disease-resistant rice cultivars is the most effective way to control rice blast disease. However, the rice blast resistance is easy to breakdown within years by blast fungus that continually changes to adapt to new cultivars. Therefore, it is important to continuously monitor the incidence of rice blast disease and race differentiation of rice blast fungus in fields. In 2020, a severe rice blast disease occurred nationwide in Korea. We evaluated the incidence of rice blast disease in Yeoju and compared the weather conditions at the periods of rice blast disease in 2019 and 2020. We investigated the races and avirulence genes of rice blast isolates in Yeoju to identify race diversity and genetic characteristics of the isolates. This study will provide empirical support for rice blast control and the breeding of blastresistant rice cultivars.  相似文献   

7.
To further our understanding of the genetic control of blast resistance in rice cultivar Gumei 2 and, consequently, to facilitate the utilization of this durably blast-resistant cultivar, we studied 304 recombinant inbred lines of indica rice cross Zhong 156/Gumei 2 and a linkage map comprising 181 markers. An analysis of segregation for resistance against five isolates of rice blast suggested that one gene cluster and three additional major genes that are independently inherited are responsible for the complete resistance of Gumei 2. The gene cluster was located to chromosome 6 and includes two genes mapped previously, Pi25(t), against Chinese rice blast isolate 92-183 (race ZC15) and Pi26(t) against Philippine rice blast isolate Ca89 (lineage 4), and a gene for resistance against Philippine rice blast isolate 92330-5 (lineage 17). Of the two genes conferring resistance against the Philippine isolates V86013 (lineage 15) and C923-39 (lineage 46), we identified one as Pi26(t) and mapped the other onto the distal end of chromosome 2 where Pib is located. We used three components of partial blast resistance, percentage diseased leaf area (DLA), lesion number and lesion size, all measured in the greenhouse, to measure the degree of susceptibility to isolates Ca89 and C923-39 and subsequently identified nine and eight quantitative trait loci (QTLs), respectively. Epistasis was determined to play an important role in partial resistance against Ca89. Using DLA measured on lines susceptible in a blast nursery, we detected six QTLs. While different QTLs were detected for partial resistance to Ca89 and C923-39, respectively, most were involved in the partial resistance in the field. Our results suggest that the blast resistance in Gumei 2 is controlled by multiple major genes and minor genes with epistatic effects.  相似文献   

8.
 The poor definition of variation in the ascochyta blight fungus (Ascochyta rabiei) has historically hindered breeding for resistance to the chickpea (Cicer arietinum L.) blight disease in West Asia and North Africa. We have employed 14 RAPD markers and an oligonucleotide probe complementary to the microsatellite sequence (GATA)4 to construct a genotype-specific DNA fragment profile from periodically sampled Syrian field isolates of this fungus. By using conventional pathogenicity tests and genome analysis with RAPD and microsatellite markers, we demonstrated that the DNA markers distinguish variability within and among the major pathotypes of A. rabiei and resolved each pathotypes into several genotypes. The genetic diversity estimate based on DNA marker analysis within pathotypes was highest for the least-aggressive pathotype (pathotype I), followed by the aggressive (pathotype II) and the most-aggressive pathotype (pathotype III). The pair-wise genetic distance estimated for all the isolates varied from 0.00 to 0.39, indicating a range from a clonal to a diverse relationship. On the basis of genome analysis, and information on the spatial and temporal distribution of the pathogen, a general picture of A. rabiei evolution in Syria is proposed. Received: 10 January 1998 / Accepted: 23 January 1998  相似文献   

9.
47 Polish isolates of the blackleg fungus Leptosphaeria maculans (Phoma lingam) were compared with eight well-defined reference strains from Germany, France, Denmark, Australia and one Polish isolate of Phoma nigrificans. The isolates were tested (i) for growth characteristics, (ii) for their ability to form sirodesmins, (iii) for cellulolytic enzymes, and (iv) for pathotype-differentiating molecular markers generated by RAPD-PCR, PCR analysis with pathotype-specific primer pairs and PFGE. With two exceptions all Polish isolates do not form sirodesmins. grow rapidly without penetrating into the substrate and form in most cases yellow or brown pigments in Czapek-Dox liquid cultures. With respect to cellulase secretion and molecular fingerprinting Polish A strains (aggressive) fit into the general picture of the aggressive pathotype group, whereas the NA isolates (non-aggressive) display a higher degree of heterogeneity. This matches with inoculation tests on rape seedlings, which revealed a considerable number of isolates ranging in aggressivity between the conventional A and NA pathotype group. Molecular fingerprinting techniques unequivocally sorted intermediately aggressive isolates into the NA pathotype group. Isolate Ph Bial, which produces sirodesmin but groups within NA isolates according to molecular and physiological markers, may represent a novel third group besides A and NA strains with intermediate aggressivity (IA). We hybridized Southern blots of electrophoretically separated chromosomes with radioactively labelled PCR fragments used for differentiation between A and NA isolates. The specificity of diagnostic PCR amplicons is reflected at the genomic level. The A probe reveals a single hybridizing chromosome exclusively in A strains. The NA probe reveals several chromosomes and is specific for the NA pathotype group. Chromosomes from intermediately aggressive strains are equally well recognized by the NA probe as are Polish isolates with low aggressivity and give no signal with the A probe. Both diagnostic DNA sequences are highly specific for the pathotype group they were derived from. The lack of correspondence of both genetic elements between A and NA strains strongly supports the idea of ascribing the pathotype groups to different species. Whereas the A pathotype group is genetically homogeneous and congruent with the species Leptosphaeria maculans, the NA group needs to be revised taxonomically. NA isolates will presumably have to be split into several independent species.  相似文献   

10.
Fungi are known to have variable genomes that can generate new virulence types capable of attacking important crop plants. To assess chromosome length polymorphisms in the barley spot blotch pathogen (Cochliobolus sativus), we analyzed the karyotypes of 16 isolates using contour-clamped homogeneous electric field (CHEF) electrophoresis. The collection of isolates studied were from diverse regions of the world (USA, Canada, Japan, Brazil, Uruguay, and Poland) and included representatives comprising the three known C. sativus pathotypes of 0, 1, and 2. Under two different running conditions, the number of CHEF bands observed ranged from 8 to 13 with a size range of 0.85 to 3.80 mega-bases (Mb). Each of the 16 isolates showed a unique banding pattern, except for two North Dakota isolates ND90Pr and ND91-Bowman, which were very similar. Single-copy DNA probes, previously assigned to each of the 15 chromosomes identified in reference isolate ND93-1, were hybridized to Southern blots of CHEF-separated chromosomes and revealed highly polymorphic chromosomes among isolates. Chromosomal rearrangements (translocations, deletions, duplications) were found in several isolates. DNA markers previously found linked to VHv1, a gene in pathotype 2 isolates conferring virulence on barley cultivar Bowman, also were used as probes in hybridizations with the CHEF blots. The results showed that the chromosome carrying the virulence gene in pathotype 2 isolates is larger than its counterpart without the gene in other isolates. This suggests that the genomic region carrying the virulence locus VHv1 is unique to pathotype 2 isolates. This study provides useful information on genome structure and divergence, which is essential for advancing our understanding of the genetics and biology of C. sativus.  相似文献   

11.
This study aimed to examine Brazilian M. oryzae populations using 18 microsatellites. Fifty cultivars were sown in plastic trays for the pathotyping of 847 isolates. The DNA of 494 isolates was extracted and purified using the modified Doyle and Doyle method, the genetic structure was determined by the software Structure, and the actual number was selected from the prediction method based on the K values. Nei's genetic distance among the subpopulations was determined with the aid of the program Genetix, and the amova was performed with the program Arlequin. Out of 847 inoculated monosporic isolates, 528 infected their respective cultivars; of the 528 isolates pathotyped, there was a prevalence of group IA and pathotype IF‐1, which was the most frequent pathotype in the rice production areas of Brazil. The Bayesian clustering analysis indicated that 19 was the optimal value of K; this value was the lowest standard deviation and log (ln K) closest to zero, which predicted the 494 isolates of M. oryzae that were selected for molecular studies to be grouped into 19 subpopulations. The AMOVA detected a 37.13% variability within the 19 subpopulations and 62.87% variability among the subpopulations. The polymorphic information content (PIC) ranged from 0 to 0.756. Thirty three rare alleles were found distributed among 15 out of 19 subpopulations. The Margalef index ranged from 38.69 to 79.21 for all 18 analysed locus. The results indicated that the identification of different blast resistance genes must consider the composition of each subpopulation and that the identification is most effective when performed within a subpopulation and then between subpopulations.  相似文献   

12.
The population structure of Magnaporthe grisea, the causal agent of the rice blast, was analyzed in Mazandaran province, using DNA fingerprinting based on RAPD-PCR by means of three primers including "I", "D" and "H". Total DNA of 47 isolates was extracted and amplified according to a specific PCR program. As a result, variable length fragments were generated. Each isolate was subjected to DNA fingerprinting and clonal lineages were determined. Phenetic analysis differentiated three distinct fingerprint lineages. In order to study on fertility status and distribution of the mating type idiomorphs (alleles), 72 monoconidial isolates from Mazandaran province were paired with four standard fertile hermaphrodite isolates. The mating type of 36 isolates was determined as Mat 1-1. The others (36 isolates) did not form any perithecia in pairing with standard isolates  相似文献   

13.
本实验采用RFLP技术,对中国东部栗疫病菌(Cryphonectria parasitica)进行了群体遗传结构的研究。313个参试菌株来自10个省(市)的16个群体(子群体),样本分布在北纬24°N—41°N。各菌株的DNA分别用限制性内切酶Pst Ⅰ和EcoR Ⅰ酶切,先后以10个低拷贝DNA探针和1个DNA指纹图谱探针进行了杂交和检测。结果表明,两个探针(pCB29和pMS29.1)的杂交图谱呈单态性;探针pCB19的杂交图谱显示,菌株DNA以PstⅠ酶切的为单态性,以EcoR Ⅰ酶切的则呈多态性;其他7个低拷贝探针的杂交图谱都呈多态性(Pst Ⅰ酶切)、指纹图谱探针的检测结果显示,辽宁凤城群体的菌株与中国东部其他群体的菌株相比,具有更多的限制性杂交片段,菌株间的遗传变异性也更大。  相似文献   

14.
Genome fingerprinting has been a major role in characterization of population structure and analysis of the variability in phytopathogenic fungi. In order to characterize Korean rice blast fungal isolates, the genomic DNAs were digested with Alu I endonuclease and subsequent PCR amplifications using random decamer primers with combinations of microsatellite primers had been carried out. This Alu-Inter SSR technique revealed high polymorphism among the Korean blast fungal isolates. Then, fragments from the Alu-Inter SSR analysis were isolated to be used as probes in Southern hybridization, which also revealed high polymorphism between isolates to distinguish individuals. The sequences of the isolated fragments contained TC/AG tandem repeats interspersed with a 30 bp direct repeat. In gel blot analysis, the isolated TC/AG repeat microsatellite sequences were proved to be useful for characterizing the isolates in blast fungi in addition to the conventional MGR (Magnaporthe grisea repeat) probes. One interesting point was that the rice blast fungus derived TC/AG repeat microsatellite sequences were abundant in non-rice blast fungi and plant species, but not in other fungi and yeasts. A discussion on the possible horizontal gene transfer between phytopathogenic fungi and host plants is presented.  相似文献   

15.
从80个随机引物中筛选到带型清晰、多态性及重复性均好的10个引物,对采自广东省1998-1999年四个自然生态稻作区的101个稻瘟病菌菌株进行随机扩增多态性DNA (Random Amplified Polymorphic DNA, RAPD) 指纹分析。10个引物共扩增出113条多态性带,表明广东省稻瘟病菌具有丰富的遗传多样性;RAPD分析可为该菌的遗传多样性分析提供大量的分子标记。对菌株间相似性系数和应用加权算术平均组对法 (Unweighted Pair Group Method using Arithmetic Average, UPGMA) 构建的聚类树状图进行分析,以相似性系数为0.62阀值时,可将101个菌株划分为14个遗传宗谱;其中宗谱1及宗谱2的菌株数占总数的80.2%,为优势宗谱; 其余的20个菌株分别归属于其他12个宗谱,由此说明广东省的稻瘟病病原菌群体既存在很突出的优势宗谱,又存在较多具遗传多样性的小宗谱。分析不同稻作生态区的菌株发现,每个稻作生态区既有共同的宗谱,又有其特异的宗谱;广东省稻瘟病菌群体遗传多样性的组成在不同生态稻作区是相对地比较稳定的。分析不同年份和早晚稻生长季节采集的菌株发现,广东省稻瘟病菌群体遗传多样性在年份和早晚稻生长季节之间也存在一定的特异性。  相似文献   

16.
Blast caused by the fungus Magnaporthae grisea (Herbert) Borr. (anamorphe Pyricularia oryza Cav.) is a serious disease of rice (Oryza sativa L.). One method to overcome this disease is to develop disease resistant cultivars. Due to the genetic plasticity in the pathogen genome, there is a continuous threat to the effectiveness of the developed cultivars. Additional studies of the genetics of resistance, virulence stability and functional genomics are required to accelerate research into understanding the molecular basis of blast disease resistance. In this study, individual plants of the F3 population derived from Pongsu Seribu 2 and Mahsuri were used for pathogenesis assays and inheritance studies of blast resistance. The study was performed with two of the most virulent Malaysian M. grisea pathotypes: P7.2 and P5.0. For blast screening, plants were scored based on the IRRI Standard Evaluation System (SES). F3 populations showed a segregation ratio of 3R:1S for pathotype P7.2, indicating that resistance to this pathotype is likely controlled by a single nuclear gene. Chi‐square analysis showed that the F3 families segregated in a 15R:1S ratio for pathotype P5.0. Therefore, locus interactions or epitasis of blast resistance occur against pathotype P5.0 in the F3 population derived from Pongsu Seribu 2 and Mahsuri. This can be explained by the presence of two independent dominant genes that when present simultaneously, provide resistance to the M. gresia pathotype P5.0. These results indicated that blast resistance in rice is due to the combined effects of multiple loci with major and minor effects. The genetic data generated here will be useful in the breeding of local cultivars for resistance to field blast. The methodology reported here will facilitate the mapping of genes and quantitative trait loci (QTLs) underlying the blast resistance trait.  相似文献   

17.
We previously detected infection-promoting activity in the supernatant of the conidial suspension (SCS) of the rice blast fungus. In the present study, a molecule carrying the activity was purified and identified as 2'-deoxyuridine (dU). The infection-promoting activity of dU was strictly dependent on its chemical structure and displayed characteristics consistent with those of the SCS. Notably, the activity of dU was exclusively detected during interactions between rice and virulent isolates of the fungus, the number of susceptible lesions in leaf blades was increased by dU, and nonhost resistance in rice plants was not affected by treatment with dU. In addition, the expression of pathogensis-related genes, accumulation of H(2)O(2), and production of phytoalexins in rice in response to inoculation with virulent fungal isolates was not suppressed by dU. The infection-promoting activity of dU was not accompanied by elevated levels of endogenous abscissic acid, which is known to modify plant-pathogen interactions, and was not detected in interactions between oat plants and a virulent oat blast fungus isolate. Taken together, these results demonstrate that dU is a novel infection-promoting factor that acts specifically during compatible interactions between rice plants and rice blast fungus in a mode distinct from that of toxins and suppressors.  相似文献   

18.
Magnaporthe oryzae, the causal agent of wheat blast, was characterized on a molecular level with 38 newly isolated genomic SSR loci. Among the 31 wheat isolates analyzed, 15 polymorphic loci were detected, with an average of 1.7 alleles per locus, 28.9% of them being highly or reasonably informative. The number of polymorphic loci was higher in isolates from Londrina in the Brazilian state of Paraná and Coromandel in Minas Gerais compared with Goiânia in Goiás and São Borja in Rio Grande do Sul. The rice isolate was clearly different from the wheat isolates, and the size difference in polymorphic SSR loci between one isolate from wheat and one isolate from rice was associated with the number of repeats. Some isolates collected from different states and in different years demonstrated similarities of 100%. The markers developed here are useful for the genetic analysis of M. oryzae isolated from wheat, and isolates representing the variability detected in the field can be used to search for better wheat blast resistance.  相似文献   

19.
稻瘟病分子生物学研究进展   总被引:18,自引:0,他引:18  
稻瘟病分子生物学发展迅速,已分子标记定位的稻瘟病主效抗性基因15个,微效抗性基因3个;水稻抗稻瘟病基因Pi-ta和Pi-b已成功克隆。稻瘟病菌系谱与致病型关系可分为简单与复杂两种类型。本文对水稻抗稻瘟病基因的定位和克隆,稻瘟病菌群体遗传结构,致病性遗传、基因组分析、无毒基因克隆、准性生殖等研究进展进行了评述。  相似文献   

20.
Rice sheath blight fungus Rhizoctonia solani has a wide host range and is highly variable in pathogenecity, sclerotial production and cultural characteristics. In India, breeding for sheath blight resistant cultivars has been a priority area of research. However, lack of adequate information about the genetic variability of the fungal populations occurring in India, non-availability of appropriate markers and the non-availability of resistant donors are some of the limiting factors to achieve this objective. To assess the genetic variability in sheath blight fungus, 18 isolates collected from different rice growing regions of India were analyzed by using random amplified polymorphic DNA (RAPD) markers.The similarity values of RAPD profiles ranged from 0.41 to 0.85 with an average of 0.66 among all the isolates. The percentage polymorphism detected per primer varied from 79.2 to 100%. All the primers could be used to fingerprint the individual isolates. The cluster analysis using unweighted paired group method with arithmetic averages could distinguish between R. solani isolates as well as the virulent and avirulent isolates on rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号