首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The complete nucleotide sequence of the major species of cytoplasmic 5S ribosomal RNA of Euglena gracilis has been determined. The sequence is: 5' GGCGUACGGCCAUACUACCGGGAAUACACCUGAACCCGUUCGAUUUCAGAAGUUAAGCCUGGUCAGGCCCAGUUAGUAC UGAGGUGGGCGACCACUUGGGAACACUGGGUGCUGUACGCUUOH3'. This sequence can be fitted to the secondary structural models recently proposed for eukaryotic 5S ribosomal RNAs (1,2). Several properties of the Euglena 5S RNA reveal a close phylogenetic relationship between this organism and the protozoa. Large stretches of nucleotide sequences in predominantly single-stranded regions of the RNA are homologous to that of the trypanosomatid protozoan Crithidia fasticulata. There is less homology when compared to the RNAs of the green alga Chlorella or to the RNAs of the higher plants. The sequence AGAAC near position 40 that is common to plant 5S RNAs is CGAUU in both Euglena and Crithidia. The Euglena 5S RNA has secondary structural features at positions 79-99 similar to that of the protozoa and different from that of the plants. The conclusions drawn from comparative studies of cytochrome c structures which indicate a close phylogenetic relatedness between Euglena and the trypanosomatid protozoa are supported by the comparative data with 5S ribosomal RNAs.  相似文献   

2.
The primary structure of 5S RNA isolated from the posterior silkgland of Philosamia cynthia ricini was determined using three in vitro labelling techniques. The derived sequence consists of 119 nucleotides and can be folded into the secondary structure model proposed for eukaryotic 5S RNAs. This 5S RNA differs from the Bombyx mori molecule in 9 positions and from the Drosophila melanogaster sequence in 14 positions. The comparison of evolutionary rates in insect 5S RNA with inferred rates in other eukaryotic phyla leads to the conclusion that 5S RNA evolution is not constant in different eukaryotic branches, a condition which must be taken into account in phylogenetic tree constructions.  相似文献   

3.
Summary Based on the comparative analyses of the primary structure of 5S RNAs from 19 organisms, a secondary structure model of 5S RNA is proposed. 5S RNA has essentially the same structure among all prokaryotic species. The same is true for eukaryotic 5S RNAs. Prokaryotic and eukaryotic 5S RNAs are also quite similar to each other, except for a difference in a specific region.By comparing the nucleotide alignment from the juxtaposed 5S RNA secondary structures, a phylogenic tree of nineteen organisms was constructed. The time of divergence between prokaryotes and eukaryotes was estimated to be 2.5×109 years ago (minimum estimate: 2.1×109).  相似文献   

4.
Psendomonas fluorescens, yeast and HeLa cells 32P-labelled 5 S RNAs were submitted to partial hydrolysis with T1, T2 or pancreatic ribonucleases; the fragments were separated by two-dimensional acrylamide gel electrophoresis. First splits (obtained when only one cleavage takes place in the molecule) were found to occur essentially around position 40 in the sequence, as already demonstrated for Escherichia coli 5 S RNA. The existence in prokaryotic and eukaryotic 5 S RNAs of this very accessible region is thus proved. Eukaryotic 5 S RNAs also display a very accessible region around position 90 of the sequence.  相似文献   

5.
Binding complementary tri- and tetranucleotides to Escherichia coli A19 and Bacillus stearothermophilus 799 5 S RNAs permitted identification of single-stranded regions in these RNAs. Sequences around positions 10, 30, 60, 70, 85 and 95 are in a single-stranded conformation in both 5 S RNAs. It is concluded that the overall structure of bacterial 5 S RNA has been conserved during evolution. Two types of structural conservation have been observed at specific sites of the 5 S RNA: firstly, nucleotide sequence and single strandedness and secondly, single strandedness only. The oligonucleotide binding data for E. coli 5 S RNA are in general agreement with a previous study (Lewis and Doty, 1970) and do not support fully any proposed structural model.  相似文献   

6.
A rodent 4.5S RNA molecule with extensive homology to the Alu family of interspersed repetitive DNA sequences has been found physically associated with polyadenylated nuclear and cytoplasmic RNAs (W. Jelinek and L. Leinwand, Cell 15:205-214, 1978; S. Haynes et al., Mol. Cell. Biol. 1:573-583, 1981). In this report, we describe a 4.5S RNA molecule in rat cells whose RNase fingerprints are identical to those of the equivalent mouse molecule. We show that the rat 4.5S RNA is part of a small family of RNA molecules, all sharing sequence homology to the Alu family of DNA sequences. These RNAs are synthesized by RNA polymerase III and are developmentally regulated and short-lived in the cytoplasm. Of this family of small RNAs, only the 4.5S RNA is found associated with polyadenylated RNA.  相似文献   

7.
H Hori  S Osawa  K Murao    H Ishikura 《Nucleic acids research》1980,8(22):5423-5426
The nucleotide sequence of ribosomal 5S RNA from Micrococcus lysodeikticus is pGUUACGGCGGCUAUAGCGUGGGGGAAACGCCCGGCCGUAUAUCGAACCCGGAAGCUAAGCCCCAUAGCGCCGAUGGUUACUGUAACCGGGAGGUUGUGGGAGAGUAGGUCGCCGCCGUGAOH. When compared to other 5S RNAs, the sequence homology is greatest with Thermus aquaticus, and these two 5S RNAs reveal several features intermediate between those of typical gram-positive bacteria and gram-negative bacteria.  相似文献   

8.
Structure of the archaebacterial 7S RNA molecule   总被引:4,自引:0,他引:4  
  相似文献   

9.
A ribosomal protein binding site in the eukaryotic 5S rRNA has been delineated by examining the effect of sequence variation and nucleotide modification on the RNA's ability to exchange into the EDTA-released, yeast ribosomal 5S RNA-protein complex. 5S RNAs of divergent sequence from a variety of eukaryotic origins could be readily exchanged into the yeast complex but RNA from bacterial origins was rejected. Nucleotide modifications in any of three analogous helical regions in eukaryotic 5S RNAs of differing origin reduced the ability of this RNA molecule to form homologous or heterologous RNA-protein complexes. Because sequence comparisons did not indicate common nucleotide sequences in the interacting helical regions, a model is suggested in which the eukaryotic 5S RNA binding protein does not simply recognize specific nucleotide sequences but interacts with three strategically oriented helical domains or functional groups within these domains. Two of the domains bear a limited sequence homology with each other and contain an unpaired nucleotide or "bulge" similar to that recently reported for one of the 5S RNA binding proteins in Escherichia coli (Peattie, D.A., Douthwaite, S., Garrett, R.A. and Noller, H.F. (1981) Proc. Natl. Acad. Sci. 78, 7331-7335). The results further indicate that the single ribosomal protein of eukaryotic 5S RNA-protein complexes interacts with the same region of the 5S rRNA molecule as do the multiple protein components in complexes of prokaryotic origin.  相似文献   

10.
Ribosomes of all eukaryotes contain a single molecule of 5S, 18S, and 28S RNA. In the frog Xenopus laevis the genes which code for 18S and 28S RNA are located in the nucleolar organizer, but these genes are not linked to the 5S RNA genes. Therefore the synthesis of the three ribosomal RNAs provides a model system for studying interchromosomal aspects of gene regulation. In order to determine if the synthesis of the three ribosomal RNAs are interdependent, the relative rate of 5S RNA synthesis was measured in anucleolate mutants (o/o), which do not synthesize any 18S or 28S RNA, and in partial nucleolate mutants (pl-1/o), which synthesize 18S and 28S RNA at 25% of the normal rate. Since the o/o and pl-1/o mutants have a complete and partial deletion of 18S and 28S RNA genes respectively, but the normal number of 5S RNA genes, they provide a unique system in which to study the dependence of 5S RNA synthesis on the synthesis of 18S and 28S RNA. Total RNA was extracted from embryos labeled during different stages of development and analyzed by polyacrylamide gel electrophoresis. Quite unexpectedly it was found that 5S RNA synthesis in o/o and pl-1/o mutants proceeds at the same rate as it does in normal embryos. Furthermore, 5S RNA synthesis is initiated normally at gastrulation in o/o mutants in the complete absence of 18S and 28S RNA synthesis.  相似文献   

11.
32P labelled 5S RNA isolated fromMycobacterium smegmatis was digested withT 1 and pancreatic ribonucleases separately and fingerprinted by two dimensional high voltage electrophoresis on thin-layer DEAE-cellulose plates. The radioactive spots were sequenced and their molar yields were determined. The chain length of the 5S RNA was found to be 120. It showed resemblances to both prokaryotic and eukaryotic 5S RNAs.  相似文献   

12.
The 4.5S RNA gene from Pseudomonas aeruginosa.   总被引:5,自引:3,他引:2       下载免费PDF全文
  相似文献   

13.
Previtellogenic oocytes of Tinca tinca accumulate very large amounts of 5S RNA. We show here that 5S RNA stored in oocytes differs from liver 5S RNA in 3 out of 120 nucleotides. Liver and oocyte 5S RNAs, therefore, are produced by different genes. Both kinds of 5S genes are active in oocytes. However, only 5S RNA of the oocyte type accumulates in these cells. In Tinca tinca as in Xenopus laevis, oocyte-type and somatic-type 5S RNAs differ by three properties, ie., primary structure, conformation, and metabolic stability. Nucleotide substitutions occur in different positions in oocyte and somatic 5S RNAs of Tinca tinca and Xenopus laevis. We do not understand how different sets of nucleotide substitutions confer to 5S RNAs of both species similar properties in vivo, namely, increased metabolic stability.  相似文献   

14.
15.
《FEBS letters》1987,213(2):301-303
The 5 S rRNA sequence was determined for the bacterium Herpetosiphon strain Senghas Wie 2. It is the first 5 S RNA sequence reported for a member of the eubacterial phylum defined by green non-sulfur bacteria. The sequence fits into a consensus secondary structure model for eubacterial 5 S RNA. At four positions, the sequence shows substitutions with respect to strongly conserved nucleotides found in other hitherto examined eubacterial 5 S RNAs.  相似文献   

16.
Spinacia oleracia cholorplast 5S ribosomal RNA was end-labeled with [32P] and the complete nucleotide sequence was determined. The sequence is: pUAUUCUGGUGUCCUAGGCGUAGAGGAACCACACCAAUCCAUCCCGAACUUGGUGGUUAAACUCUACUGCGGUGACGAU ACUGUAGGGGAGGUCCUGCGGAAAAAUAGCUCGACGCCAGGAUGOH. This sequence can be fitted to the secondary structural model proposed for prokaryotic 5S ribosomal RNAs by Fox and Woese (1). However, the lengths of several single- and double-stranded regions differ from those common to prokaryotes. The spinach chloroplast 5S ribosomal RNA is homologous to the 5S ribosomal RNA of Lemna chloroplasts with the exception that the spinach RNA is longer by one nucleotide at the 3' end and has a purine base substitution at position 119. The sequence of spinach chloroplast 5S RNA is identical to the chloroplast 5S ribosomal RNA gene of tobacco. Thus the structures of the chloroplast 5S ribosomal RNAs from some of the higher plants appear to be almost totally conserved. This does not appear to be the case for the higher plant cytoplasmic 5S ribosomal RNAs.  相似文献   

17.
J Andersen  N Delihas  J S Hanas  C W Wu 《Biochemistry》1984,23(24):5752-5759
The structure of Xenopus laevis oocyte (Xlo) 5S ribosomal RNA has been probed with single-strand-specific ribonucleases T1, T2, and A with double-strand-specific ribonuclease V1 from cobra venom. The digestion of 5'- or 3'-labeled renatured 5S RNA samples followed by gel purification of the digested samples allowed the determination of primary cleavage sites. Results of these ribonuclease digestions provide support for the generalized 5S RNA secondary structural model derived from comparative sequence analysis. However, three putative single-stranded regions of the molecule exhibited unexpected V1 cuts, found at C36, U73, U76, and U102. These V1 cuts reflect additional secondary structural features of the RNA including A.G base pairs and support the extended base pairing in the stem containing helices IV and V which was proposed by Stahl et al. [Stahl, D. A., Luehrsen, K. R., Woese, C. R., & Pace, N. R. (1981) Nucleic Acids Res. 9, 6129-6137]. A conserved structure for helix V having a common unpaired uracil residue at Xlo position 84 is proposed for all eukaryotic 5S RNAs. Our results are compared with nuclease probes of other 5S RNAs.  相似文献   

18.
The complete nucleotide sequence of the 5 S ribosomal RNA from the thermophilic cyanobacterium Synechococcus lividus III was determined. The sequence is: 5′U-C- C-U-G-G-U-G-G-U-G-A-U-G-G-C-G-A-U-G-U-G-G-A-C-C-C-A-C-A-C-U-C-A-U-C- C-A-U-C-C-C-G-A-A-C-U-G-A-G-U-G-G-U-G-A-A-A-C-G-C-A-U-U-U-G-C-G-G-C- G-A-C-G-A-U-A-G-U-U-G-G-A-G-G-G-U-A-G-C-C-U-C-C-U-G-U-C-A-A-A-A-U-A- G-C-U-A-A-C-C-G-C-C-A-G-G-G-UOH3′This 5 S RNA has regional structural characteristics that are found in the green plant chloroplast 5 S RNAs and not in other known sequences of 5 S ribosomal RNAs. These homologies suggest a close phylogenetic relationship between S. lividus and the green plant chloroplasts.  相似文献   

19.
Levels of 2-O-methylation were determined in ribosomal 5·8 S RNAs from whole cells and both the nuclear and cytoplasmic fractions of rat liver, rat kidney cells in culture (NRK) and HeLa cells. All 5·8 S RNA molecules contained the alkali stable Gm-Cp dinucleotide at position 77 but only whole cell rat liver RNA contained large amounts (0·7 mol) of Um at position 14. All nuclear 5·8 S RNA fractions were largely undermethylated at this site. In contrast, cytoplasmic 5.8 S RNA from rat liver and, to a lesser degree, NRK cells contained significantly more Um; up to 80% of the molecules from rat liver contained the methylated residue. These results indicate that mature 5·8 S RNA can be methylated in the cytoplasm. When labeling kinetics were examined in NRK cells, the methylation at residue 14 was found to increase as a function of the time spent in the cytoplasm, confirming that this modification is, unlike other ribosomal RNA methylations, in part or largely cytoplasmic.  相似文献   

20.
The topography of Escherichia coli 5S RNA has been examined in the presence of ribosomal proteins L5, L18 and L25 and their different combinations, by comparing the kethoxal modification characteristics of the various RNA-protein complexes with those of the free A-conformer of 5S RNA (Noller &; Garrett, 1979, accompanying paper).Two of the four most reactive guanines, G13 and G41, are unaffected by the protein, in accord with the finding that these are the only two guanines that are accessible in the 50S subunit (Noller &; Herr, 1974). The other two very reactive guanines, G24 and G69, are strongly protected by protein L18, either in the presence or absence of proteins L5 and L25. Protein binding studies with kethoxal-modified 5S RNA provide evidence that one or both of these two guanines are directly involved in the protein-RNA interactions, and this conclusion is supported by the occurrence of guanines in these two positions in all the other sequenced prokaryotic 5S RNAs.The group of less reactive guanines, G16, G23, G44, G86 and G107, are protected to some extent by each of the proteins L5, L18 and L25; the strongest effect is with L18. We suggest that this is attributable to a small increase in the conformational homogeneity of the 5S RNA and that L18, in particular, induces some tightening of the RNA structure.Only one guanine, G69, is rendered more accessible by the proteins. This effect is produced by protein L25, which is known to cause some destructuring of the 5S RNA (Bear et al., 1977). There was no other evidence for any destructuring of the 5S RNA. In particular, the sequence 72 to 83, which is complementary to a sequence in 23S RNA (Herr &; Noller, 1975), is not modified. However, in contrast to an earlier report (Erdmann et al., 1973), the conserved sequence G44-A-A-C, which has been implicated in tRNA binding, was not rendered more accessible by the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号