首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autosomal dominant forms of retinitis pigmentosa appear among the most frequent types of retinal degenerations. Two clinical subtypes have been recognized, namely the early onset, severe form (type I) and the late onset, moderate form (type II). A linkage between the D3S47 probe (C17) with the gene of the type I has been recently demonstrated by Humphries et al., 1989. Here, two families with type II of the disease have been tested for possible allelism at the D3S47 locus. A negative lod-score was found with this probe and a linkage with this region could be excluded. These results support the hypothesis of a genetic heterogeneity in autosomal dominant forms of retinitis pigmentosa.  相似文献   

2.
Retinitis pigmentosa is an inherited form of blindness caused by progressive retinal degeneration. P. McWilliam et al. (1989, Genomics 5: 619-622) demonstrated close genetic linkage between autosomal dominant retinitis pigmentosa (ADRP) and locus D3S47 (C17) in a single early onset pedigree. The marker C17 maps to the long arm of chromosome 3. Clinically, the disease phenotype has been subdivided into at least two forms on the basis of age of onset, as well as electrodiagnostic criteria. We demonstrate that C17 is unlinked in a late onset pedigree, indicating that the phenotypic variation seen reflects underlying genetic heterogeneity.  相似文献   

3.
Summary A linkage analysis has been performed on three Australian families segregating for autosomal dominant retinitis pigmentosa (ADRP). No evidence of linkage has been found in any of the pedigrees studied between the locus D3S47 and the gene for ADRP. The D3S47 locus was found to show very close linkage with the ADRP gene in a large Irish pedigree. Our study together with a similar report on a British family indicates that there is genetic heterogeneity in this disease.  相似文献   

4.
Linkage of the anonymous DNA marker D3S47 (CRI-C17) and autosomal dominant retinitis pigmentosa (ADRP) was tested in a large, extended family with type II (late onset) ADRP. D3S47 has been shown previously to be tightly linked to the RP locus in one family with type I (early onset) ADRP (McWilliams et al., 1989, Genomics 5: 619-622). Linkage between ADRP type II and D3S47 has recently been excluded in a single family (Ingelhearn et al., 1990, Genomics 6: 168-173). Results of our linkage analysis clearly establish that type II ADRP in our family is unlinked to D3S47. These findings support the hypothesis that type II ADRP is genetically distinct from type I ADRP.  相似文献   

5.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

6.
Retinitis pigmentosa is the most prevalent inherited disorder of the retina. It can be autosomal dominant (adRP), autosomal recessive (arRP) or X-linked (XLRP). A form of adRP mapping to chromosome 7q was reported in a large Spanish pedigree. We have typed DNA from the members of another Spanish family for polymorphic markers from the known candidate genes. Positive lod scores were obtained only for the markers located on 7q31-35, giving a maximum lod score of 2.98 (3.01 by multipoint analysis) at = 0.00 for D7S480. A brief clinical evaluation is given.  相似文献   

7.
Recent evidence suggesting the involvement of mutant rhodopsin proteins in the pathogenesis of autosomal recessive retinitis pigmentosa has prompted us to investigate whether this form of the disease shows non-allelic genetic heterogeneity, as has previously been shown to be the case in autosomal dominant retinitis pigmentosa. The availability of a unique inbred Dutch pedigree has enabled us to address this question. We have used an intragenic polymorphism to exclude the possibility that a mutation in the rhodopsin gene is responsible for the disease in this patient population. These data provide evidence for the involvement of at least two loci in autosomal recessively inherited retinitis pigmentosa.  相似文献   

8.
As part of our ongoing linkage studies of degenerative retinal diseases, we tested seven DNA markers and two classical genetic markers from chromosome 4 in two extended families with autosomal dominant retinitis pigmentosa (ADRP). Our goals were (1) to detect or exclude linkage of ADRP to markers spanning most of chromosome 4 and (2) to contribute useful new information regarding the linkage map of this chromosome. Our results exclude linkage of ADRP from more than 82% of chromosome 4. We detected four new linkage relationships: loose linkage of K082 (D4S10) and G1E5 (D4S21) at a distance of 21 cM; loose linkage of 4F2 (D4S18) and GC protein at a distance of 19 cM; tight linkage (i.e., no recombinants) between B3D (D4S44), B5A (D4S40), and the MNS blood group; and tight linkage between 4F2 and GDS5 (D4S23). These data, combined with previously reported data, exclude ADRP from approximately 35% of the human genome.  相似文献   

9.
Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue we have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have found a likelihood ratio of heterogeneity versus homogeneity of 4.90. We performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test we obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses we have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, we have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Zm) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, we have mapped (Zm = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome.  相似文献   

10.
Retinitis pigmentosa (RP) is the most prevalent human retinopathy of genetic origin. Chromosomal locations for X-linked RP and autosomal dominant RP genes have recently been established. Multipoint analyses with ADRP and seven markers on the long arm of chromosome 3 demonstrate that the gene for rhodopsin, the pigment of the rod photoreceptors, cosegregates with the disease locus with a maximum lod score of approximately 19, implicating rhodopsin as a causative gene. Recent studies have indicated the presence of a point mutation at codon 23 in exon 1 of rhodopsin which results in the substitution of histidine for the highly conserved amino acid proline, suggesting that this mutation is a cause of rhodopsin-linked ADRP. This mutation is not present in the Irish pedigree in which ADRP has been mapped close to rhodopsin. Another mutation in the rhodopsin gene or in a gene closely linked to rhodopsin may be involved. Moreover, the gene in a second ADRP pedigree, with Type II late onset ADRP, does not segregate with chromosome 3q markers, indicating that nonallelic as well as perhaps allelic genetic heterogeneity exists in the autosomal dominant form of this disease.  相似文献   

11.
Linkage mapping in a large, seven-generation family with type 2 autosomal dominant retinitis pigmentosa (ADRP) demonstrates linkage between the disease locus (RP1) and DNA markers on the short arm of human chromosome 8. Five markers were most informative for mapping ADRP in this family using two-point linkage analysis. The markers, their maximum lod scores, and recombination distances were ANK1 (ankyrin)--2.0 at 16%; D8S5 (TL11)--5.3 at 17%; D8S87 [a(CA)n repeat]--7.2 at 14%; LPL (lipoprotein lipase)--1.5 at 26%; and PLAT (plasminigen activator, tissue)--10.6 at 7%. Multipoint linkage analysis, using a simplified pedigree structure for the family (which contains 192 individuals and two inbreeding loops), gave a maximum lod score of 12.2 for RP1 at a distance 8.1 cM proximal to PLAT in the pericentric region of the chromosome. Based on linkage data from the CEPH (Paris) reference families and physical mapping information from a somatic cell hybrid panel of chromosome 8 fragments, the most likely order for four of these five loci and the diseases locus is 8pter-LPL-D8S5-D8S87-PLAT-RP1. (The precise location of ANK1 relative to PLAT in this map is not established). The most likely location for RP1 is in the pericentric region of the chromosome. Recently, several families with ADRP with tight linkage to the rhodopsin locus at 3q21-q24 were reported and a number of specific rhodopsin mutations in families with ADRP have since been reported. In other ADRP families, including the one in this study, linkage to rhodopsin has been excluded. Thus mutations at two different loci, at least, have been shown to cause ADRP. There is no remarkable clinical disparity in the expression of disease caused by these different loci.  相似文献   

12.
Autosomal dominant retinitis pigmentosa (ADRP) has recently been linked to locus D3S47 (probe C17), with no recombination, in a single large Irish family. Other ADRP pedigrees have shown linkage at zero recombination, linkage with recombination, and no linkage, demonstrating genetic heterogeneity. The gene encoding rhodopsin, the rod photoreceptor pigment, is closely linked to locus D3S47 on chromosome 3q. A point mutation changing a conserved proline to histidine in the 23d codon of the gene has been demonstrated in affected members of one ADRP family and in 17 of 148 unrelated ADRP patients. We have sequenced the rhodopsin gene in a C17-linked ADRP family and have identified in the 4th exon and in-frame 3-bp deletion which deletes one of the two isoleucine monomers at codons 255 and 256. This mutation was not found in 30 other unrelated ADRP families. The deletion has arisen in the sequence TCATCATCAT, deleting one of a run of three x 3-bp repeats. The mechanism by which this occurred may be similar to that which creates length variation in so-called mini- and microsatellites. Thus ADRP is an extremely heterogeneous disorder which can result from a range of defects in rhodopsin and which can have a locus or loci elsewhere in the genome.  相似文献   

13.
Linkage analysis was performed on a large Dutch family with autosomal dominant retinitis pigmentosa. Linkage was found to the RP17 locus on chromosome 17q22, which was previously described in two South African families by Bardien et al. (1995, 1997). Assuming that the disease phenotypes in these families are caused by the same gene, the RP17 critical region is refined to a 7.7-cM interval between markers D17S1607 and D17S948. Two positional candidate genes, the retina-specific amine oxidase (RAO) gene (AOC2) and the cone transducin γ gene (GNGT2), were excluded. Received: 7 September 1998 / Accepted: 23 November 1998  相似文献   

14.
In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families.  相似文献   

15.
16.
Summary We report the characterization of a new eightallele microsatellite (D3S621) isolated from a human chromosome 3 library. Two-point and multi-locus genetic linkage analysis have shown D3S621 to co-segregate with the previously mapped RP4 ( m=0.12, Z m=4.34) and with other genetic markers on the long arm of the chromosome, including D3S14 (R208) ( m=0.00, Z m= 15.10), D3S47 (C17) ( m=0.11, Z m=4.95), Rho ( m= 0.07, Z m=1.37), D3S21 (L182) ( m=0.07, Z m=2.40) and D3S19 (U1) ( m=0.13, Z m=2.78). This highly informative marker, with a polymorphic information content of 0.78, should be of considerable value in the extension of linkage data for autosomal dominant retinitis pigmentosa with respect to locii on the long arm of chromosome 3.  相似文献   

17.
18.
Genetic studies have revealed that 25 to 30% of autosomal dominant retinitis pigmentosa (adRP) families have mutations in the rhodopsin gene, while the remainder do not. More recently linkage data and mutation detection have demonstrated two further loci implicated in adRP, at an as yet unidentified gene on chromosome 8p and at the human gene homologue of the mouse Rds (Retinal Degeneration Slow) gene on chromosome 6p. We have previously reported exclusion of adRP from the rhodopsin locus on 3q in two large adRP families. We now report exclusion data for both families, on chromosomes 6 and 8, demonstrating that the adRP phenotype results from mutations in at least four locations.  相似文献   

19.
Retinitis pigmentosa (RP) is a debilitating disease of the retina affecting ∼1.5 million people worldwide. RP shows remarkable heterogeneity both clinically and genetically, with more than 40 genetic loci implicated, 12 of which account for the autosomal dominant form (adRP) of inheritance. We have recently identified a French Canadian family that presents with early onset adRP. After exclusion of all known loci for adRP, a genome-wide search established firm linkage with a marker from the short arm of chromosome 9 (LOD score of 6.3 at recombination fraction θ=0). The linked region is flanked by markers D9S285 and D9S1874, corresponding to a genetic distance of 31 cM, in the region 9p22-p13.  相似文献   

20.
A linkage analysis is reported for three branches of a single family segregating for autosomal dominant retinitis pigmentosa. A statistically significant lod score of 3.9 is obtained for the RP locus and AMY2 at a recombination frequency of 1%. This linkage indicates that the RP locus is on the no. 1 chromosome since the AMY2 locus has been placed on the short arm of 1. Lod scores are reported for four other loci on chromosome 1; none of these achieve statistical significance. Analyses are reported for 23 additional autosomal markers and close linkage with RP can be excluded for a number of these.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号