首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Viruses like the human immunodeficiency virus (HIV), the hepatitis B virus (HBV), the hepatitis C virus (HCV) and many others undergo numerous rounds of inaccurate reproduction within an infected host. The resulting viral quasispecies is heterogeneous and sensitive to any selection pressure. Here we extend earlier work by showing that for a wide class of models describing the interaction between the virus population and the immune system, virus evolution has a well-defined direction toward increased pathogenicity. In particular, we study virus-induced impairment of the immune response and certain cross-reactive stimulation of specific immune responses. For eight different mathematical models, we show that virus evolution reduces the equilibrium abundance of uninfected cells and increases the rate at which uninfected cells are infected. Thus, in general, virus evolution makes things worse. An idea for combating HIV infection, however, is constructing a virus mutant that could outcompete the existing infection without being pathogenic itself.  相似文献   

3.
Patel MR  Loo YM  Horner SM  Gale M  Malik HS 《PLoS biology》2012,10(3):e1001282
The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.  相似文献   

4.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

5.
We use a mathematical model to study the evolution of influenza A during the epidemic dynamics of a single season. Classifying strains by their distance from the epidemic-originating strain, we show that neutral mutation yields a constant rate of antigenic evolution, even in the presence of epidemic dynamics. We introduce host immunity and viral immune escape to construct a non-neutral model. Our population dynamics can then be framed naturally in the context of population genetics, and we show that departure from neutrality is governed by the covariance between a strain's fitness and its distance from the original epidemic strain. We quantify the amount of antigenic evolution that takes place in excess of what is expected under neutrality and find that this excess amount is largest under strong host immunity and long epidemics.  相似文献   

6.
Viruses that do not cause life-long immunity persist by evolving rapidly in response to prevailing host immunity. The immune-escape mutants emerge frequently, displacing or co-circulating with native strains even though mutations conferring immune evasion are often detrimental to viral replication. The epidemiological dynamics of immune-escape in acute-infection viruses with high transmissibility have been interpreted mainly through immunity dynamics at the host population level, despite the fact that immune-escape evolution involves dynamical processes that feedback across the within- and between-host scales. To address this gap, we use a nested model of within- and between-host infection dynamics to examine how the interaction of viral replication rate and cross-immunity imprint host population immunity, which in turn determines viral immune escape. Our explicit consideration of direct and immune-mediated competitive interactions between strains within-hosts revealed three insights pertaining to risk and control of viral immune-escape: (1) replication rate and immune-stimulation deficiencies (i.e., original antigenic sin) act synergistically to increase immune escape, (2) immune-escape mutants with replication deficiencies relative to their wildtype progenitor are most successful under moderate cross-immunity and frequent re-infections, and (3) the immunity profile along short host-transmission chains (local host-network structure) is a key determinant of immune escape.  相似文献   

7.
The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context - which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans - is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.  相似文献   

8.
Although drug resistance in Plasmodium falciparum typically evolves in regions of low transmission, resistance spreads readily following introduction to regions with a heavier disease burden. This suggests that the origin and the spread of resistance are governed by different processes, and that high transmission intensity specifically impedes the origin. Factors associated with high transmission, such as highly immune hosts and competition within genetically diverse infections, are associated with suppression of resistant lineages within hosts. However, interactions between these factors have rarely been investigated and the specific relationship between adaptive immunity and selection for resistance has not been explored. Here, we developed a multiscale, agent-based model of Plasmodium parasites, hosts, and vectors to examine how host and parasite dynamics shape the evolution of resistance in populations with different transmission intensities. We found that selection for antigenic novelty (“immune selection”) suppressed the evolution of resistance in high transmission settings. We show that high levels of population immunity increased the strength of immune selection relative to selection for resistance. As a result, immune selection delayed the evolution of resistance in high transmission populations by allowing novel, sensitive lineages to remain in circulation at the expense of the spread of a resistant lineage.In contrast, in low transmission settings, we observed that resistant strains were able to sweep to high population prevalence without interference. Additionally, we found that the relationship between immune selection and resistance changed when resistance was widespread. Once resistance was common enough to be found on many antigenic backgrounds, immune selection stably maintained resistant parasites in the population by allowing them to proliferate, even in untreated hosts, when resistance was linked to a novel epitope. Our results suggest that immune selection plays a role in the global pattern of resistance evolution.  相似文献   

9.
Persistent infection of equids by equine infectious anemia virus (EIAV) is typically characterized by a progression during the first year postinfection from chronic disease with recurring disease cycles to a long-term asymptomatic infection that is maintained indefinitely. The goal of the current study was to perform a comprehensive longitudinal analysis of the course of virus infection and development of host immunity in experimentally infected horses as they progressed from chronic disease to long-term inapparent carriage. We previously described the evolution of EIAV genomic quasispecies (C. Leroux, C. J. Issel, and R. C. Montelaro, J. Virol. 71:9627-9639, 1997) and host immune responses (S. A. Hammond, S. J. Cook, D. L. Lichtenstein, C. J. Issel, and R. C. Montelaro, J. Virol. 71:3840-3852, 1997) in four experimentally infected ponies during sequential disease episodes associated with chronic disease during the first 10 months postinfection. In the current study, we extended the studies of these experimentally infected ponies to 3 years postinfection to characterize the levels of virus replication and development of host immune responses associated with the progression from chronic disease to long-term inapparent infection. The results of these studies revealed over a 10(3)-fold difference in the steady-state levels of plasma viral RNA detected during long-term inapparent infection that correlated with the severity of chronic disease, indicating different levels of control of virus replication during long-term inapparent infections. Detailed analyses of antibody and cellular immune responses in all four ponies over the 3-year course of infection revealed a similar evolution during the first year postinfection of robust humoral and cellular immunity that then remained relatively constant during long-term inapparent infection. These observations indicate that immune parameters that have previously been correlated with EIAV vaccine protection fail to provide reliable immune correlates of control of virus replication or clinical outcome in experimental infections. Thus, these data emphasize the differences between immunity to virus exposure and immune control of an established viral infection and further emphasize the need to develop and evaluate novel immunoassays to define reliable immune correlates to vaccine and infection immunity, respectively.  相似文献   

10.
Studies of influenza virus evolution under controlled experimental conditions can provide a better understanding of the consequences of evolutionary processes with and without immunological pressure. Characterization of evolved strains assists in the development of predictive algorithms for both the selection of subtypes represented in the seasonal influenza vaccine and the design of novel immune refocused vaccines. To obtain data on the evolution of influenza in a controlled setting, naïve and immunized Guinea pigs were infected with influenza A/Wyoming/2003 (H3N2). Virus progeny from nasal wash samples were assessed for variation in the dominant and other epitopes by sequencing the hemagglutinin (HA) gene to quantify evolutionary changes. Viral RNA from the nasal washes from infection of naïve and immune animals contained 6% and 24.5% HA variant sequences, respectively. Analysis of mutations relative to antigenic epitopes indicated that adaptive immunity played a key role in virus evolution. HA mutations in immunized animals were associated with loss of glycosylation and changes in charge and hydrophobicity in and near residues within known epitopes. Four regions of HA-1 (75–85, 125–135, 165–170, 225–230) contained residues of highest variability. These sites are adjacent to or within known epitopes and appear to play an important role in antigenic variation. Recognition of the role of these sites during evolution will lead to a better understanding of the nature of evolution which help in the prediction of future strains for selection of seasonal vaccines and the design of novel vaccines intended to stimulated broadened cross-reactive protection to conserved sites outside of dominant epitopes.  相似文献   

11.
Antigenic variation is a viral strategy exploited to promote survival in the face of the host immune response and represents a major challenge for efficient vaccine development. Influenza viruses are pathogens with high transmissibility and mutation rates, enabling viral escape from immunity induced by prior infection or vaccination. Intense selection from neutralizing antibody drives antigenic changes in the surface glycoproteins, resulting in emergence of new strains able to reinfect hosts immune to previously circulating viruses. CD8+ cytotoxic T cells (CTLs) also provide protective immunity from influenza virus infection and may contribute to the antigenic evolution of influenza viruses. Utilizing mice transgenic for an influenza virus NP366-374 peptide-specific T-cell receptor, we demonstrated that the respiratory tract is a suitable site for generation of escape variants of influenza virus selected by CTL in vivo. In this report the contributions of the perforin and Fas pathways utilized by influenza virus-specific CTLs in viral clearance and selection of CTL escape variants have been evaluated. While transgenic CTLs deficient in either perforin- or Fas-mediated pathways are efficient in initial pulmonary viral control, variant virus emergence was observed in all the mice studied, although the spectrum of viral CTL escape variants selected varied profoundly. Thus, a less-restricted repertoire of escape variants was observed in mice with an intact perforin cytotoxic pathway compared with a limited variant diversity in perforin pathway-deficient mice, although maximal variant diversity was observed in mice having both Fas and perforin pathways intact. We conclude that selection of viral CTL escape variants reflects coordinate action between the tightly controlled perforin/granzyme pathway and the more promiscuous Fas/FasL pathway.  相似文献   

12.
13.
14.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

15.
During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi''s sarcoma-associated herpesvirus (KSHV) eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi''s sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705) of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.  相似文献   

16.
病毒miRNA与免疫逃逸   总被引:1,自引:0,他引:1  
微小RNA(microRNA,miRNA)是一种非编码的小分子RNA,长度一般在22 nt左右,通过与mRNA 3'UTR的特异性结合介导转录后调控过程。现已鉴定出的miRNA涵盖了从植物到人类的多个物种,并参与了调节生长、免疫、凋亡等多种生命活动。最近发现,DNA病毒感染宿主时也能编码产生miRNA,并在病毒免疫逃逸中扮演着重要角色。病毒感染是一个复杂的过程,病毒需要逃脱免疫系统才能对宿主产生持续性感染,而病毒miRNA能调控宿主和自身基因表达,帮助病毒感染宿主,且因其本身没有免疫原性,而成为病毒逃避免疫应答的重要工具,但其中的分子机制尚不十分清楚。该文就病毒miRNA如何调控病毒自身与宿主基因进行免疫逃逸的近期研究作一综述。  相似文献   

17.
We establish some properties of a within host mathematical model of malaria proposed by Recker et al. [M. Recker et al., Transient cross-reactive immune responses can orchestrate antigenic variation in malaria, Lett. Nature 429 (2004), pp. 555-558; M. Recker and S. Gupta, Conflicting immune responses can prolong the length of infection in Plasmodium falciparum malaria, Bull. Math. Biol. 68 (2006), pp. 821-835.], which includes the role of the immune system during the infection. The model accounts for the antigenic variation exhibited by the malaria parasite (Plasmodium falciparum). We show that the model can exhibit a wide variety of dynamical behaviours. We provide criteria for global stability, competitive exclusion and persistence. We also demonstrate that the disease equilibrium can be destabilized by non-symmetric cross-reactive responses.  相似文献   

18.
羊口疮病毒分子特征与免疫逃逸策略   总被引:2,自引:0,他引:2  
羊传染性脓疱皮炎(Contagious ecthyma)俗称羊口疮(Orf)是由羊口疮病毒(Orf virus,ORFV)引起的一种人畜共患传染病。ORFV是痘病毒科副痘病毒属的代表性成员之一,具有鲜明而独特的种属特征。在进化过程中,病毒捕获一系列免疫调节/致病性相关基因,通过各种表达产物协同性地限制宿主的免疫清除效应,以庇护种群的增殖和病毒粒子成熟。本文综述了ORFV的分子特征,着重分析了病毒主动干预宿主免疫应答、设计免疫逃逸的分子机制。明确病毒的免疫调节/致病性元件及其效应途径,有利于加深对ORFV生物学特性的理解,同时有利于针对Orf建立有效的防制。  相似文献   

19.
Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions. Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified regions that provide evidence of evolution under positive selection since introduction of the virus into the human population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify further candidate regions that are important for host-virus interaction.  相似文献   

20.
Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV‐induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号