首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of d-cystathionine ketimine (D-CK) and l-cystathionine ketimine (L-CK) on the stimulus-induced superoxide generation by human neutrophils were compared. When the cells were preincubated with D-CK, the superoxide generation induced by arachidonic acid (AA), phorbol 12-myristate 13-acetate (PMA), and N-formyl-methionyl-leucyl-phenylalanine (fMLP) were enhanced, showing a dependence on D-CK concentration. The rate of enhancement by D-CK was AA > PMA > fMLP. On the contrary, L-CK largely enhanced the fMLP-induced superoxide generation, whereas it showed no effect on those induced by AA and PMA. The superoxide generations induced by AA and PMA in the D-CK-treated cells were suppressed by staurosporine, while those in the L-CK-treated cells were not affected. Genistein suppressed the fMLP-induced superoxide generation in the L-CK-treated cells more efficiently than that in the D-CK-treated cells. D-CK enhanced seryl phosphorylation of 16. 5-kDa protein in human neutrophils, while L-CK enhanced tyrosyl phosphorylation of 45-kDa protein.  相似文献   

2.
Polymorphonuclear leukocytes from healthy volunteers (HPMN) generated superoxide (O2*-) following treatment with various stimuli, such as phorbol myristate acetate (PMA), opsonized zymozan (OZ) and arachidonic acid (AA). Other types of n-3 polyunsaturated fatty acids (PUFAS), such as docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA), also stimulated O2*- generation. The free form of DHA enhanced the generation of O2*- induced by PMA but inhibited that induced by OZ. In contrast, the ethylester of DHA (DHA-E) inhibited O2*- generation induced by PMA but stimulated that induced by OZ. Similar effects were also observed with ethylesters of EPA (EPA-E), DPA (DPA-E) and AA (AA-E). High concentrations of DHA-E reduced the PMA-induced formation of superoxide without affecting the cellular activity of protein kinase C (PKC). Similar phenomena were also observed with oral neutrophils from healthy volunteers (OPMN). These results indicate that PUFAS and their esters affect 02*- generation in human PMN via different pathways, thereby modulating inflammatory reactions.  相似文献   

3.
Human peripheral blood polymorphonuclear leukocytes (HPPMN) from healthy individuals are not primed and, hence, weak stimulation-dependent responses are induced by certain stimuli which bind to membrane receptors. When HPPMN were exposed to recombinant human tumor necrosis factor alpha (rHuTNF-alpha) or recombinant human granulocyte colony stimulating factor (rG-CSF), they underwent priming and the rate of superoxide anion (O.-2) generation was increased by subsequent exposure to formyl-methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ). However, the degree of enhancement was very small upon exposure to phorbol myristate acetate (PMA) or dioctanoyl glycerol (DOG). The oxygen burst induced by FMLP or OZ was inhibited by genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamid (ST638), which are inhibitors of tyrosine kinase (TK), and was enhanced by 1-(5-isoquinoline-sulfonyl)-3-methyl-piperazine (H-7) and staurosporine, which are inhibitors of protein kinase C (PKC). Without priming, however, O.-2 generation from HPPMN by high concentrations of FMLP was not inhibited strongly by genistein or ST638. On the contrary, the oxygen burst induced by PMA or DOG was stimulated by genistein or ST638 and was inhibited by H-7 or staurosporine. Furthermore, O.-2 generation by guinea pig peritoneal neutrophils, which are already primed in vivo, was induced markedly by FMLP by a mechanism which was stimulated by a low concentration of genistein or ST638. Thus, FMLP-mediated O.-2-generation of HPPMN is coupled with rHuTNF-alpha- or rG-CSF-priming and is inhibited by TK inhibitors, whereas PMA- or DOG-induced O.-2 generation is not coupled with TNF-alpha or G-CSF-priming and is inhibited by PKC inhibitors. These results suggest that both PKC and TK play critical roles in the regulatory mechanism of priming and NADPH-oxidase activation in neutrophils.  相似文献   

4.
Preincubation of human peripheral blood polymorphonuclear leukocytes (HPPMN) with recombinant human tumor necrosis factor-alpha (rHuTNF-alpha) enhanced the formylmethionyl-leucylphenylalanine (FMLP)-induced superoxide (O2-.) generation in a concentration- and preincubation time-dependent manner. The enhancement was very high for the FMLP- or opsonized zymosan (OZ)-induced O2-. generation, but was low for arachidonic acid (AA)- and phorbol myristate acetate (PMA)-induced O.2- generation. The rHuTNF-alpha has no effect on the steady state of intracellular calcium ion concentration ([Ca2+]i) nor on the membrane potential of neutrophils. The rHuTNF-alpha-primed FMLP-induced O2-. generation was inhibited by nicotineamide (NA), pertussis toxin (PT), and by the tyrosine kinase (TK) inhibitor, genistein, but was enhanced by the protein kinase C (PKC) inhibitor, H-7 (1-(5-isoquinolinesulfonyl)-3-methyl-piperazine). The inhibitory actions of NA and PT were also observed in in vivo primed guinea pig peritoneal neutrophils (GPtPMN). However, FMLP-induced O2-. generation of GPtPMN was enhanced by genistein, but was inhibited by H-7. These data indicate that TNF-alpha does not induce changes in [Ca2+]i nor in membrane potential of HPPMN, and that TNF-alpha-primed FMLP-induced O.2- generation of HPPMN is coupled with ADP-ribosylation and activation of G-proteins, and that protein kinases, especially TK, seem to exert an important role in the priming action of TNF.  相似文献   

5.
Serum-treated, or "opsonized" zymosan (OZ), a particulate material which can be phagocytized by polymorphonuclear leukocytes, activates the superoxide-generating respiratory burst in these cells. The use of dual wavelength spectroscopy in the present studies has allowed accurate continuous monitoring of superoxide generation (cytochrome c reduction) upon cellular activation by this turbid material; activation occurs after a short lag period (about 20 s) which is similar to the lag seen after activation with the chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP). Unlike the fMLP response which terminates after about 90 s, superoxide generation in response to OZ continues beyond 10 min, and is similar in this regard to the response seen with the protein kinase C activator phorbol myristate acetate (PMA). OZ and fMLP, but not PMA, also activate receptor-linked phospholipase C mechanisms as judged by the appearance of inositol trisphosphate (IP3) (as well as other inositol phosphates) and diacylglycerol (DAG), with the latter measured by a mass assay. The appearance of these potential mediators corresponded to the loss of phosphoinositides, in particular phosphatidylinositol 4,5-bisphosphate (PIP2). The magnitude of DAG and inositol sugar generation as well as the breakdown of PIP2 was considerably greater using OZ than with fMLP. In addition, while fMLP resulted in a transient increase in IP3 and DAG, OZ resulted in a sustained elevation of these molecules. With both agonists, the onset and duration of generation of putative mediators corresponded to the period of generation of O2-, consistent with a role for DAG and/or IP3 in the activation of the respiratory burst.  相似文献   

6.
α-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with α-tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of α-tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that α-tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

7.
-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with -tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of -tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that -tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

8.
Effect of six steroidal saponins isolated from Anemarrhenae rhizoma on superoxide generation in human neutrophils was investigated. The steroidal saponins examined were anemarrhenasaponin-I (An-I), anemarrhenasaponin-Ia (An-Ia), timosaponin B-I (TB-I), timosaponin B-II (TB-II), timosaponin B-III (TB-III) and timosaponin A-III (TA-III). An-I, An-Ia, and TB-III suppressed the superoxide generations induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) and arachidonic acid (AA) in a concentration-dependent manner, but enhanced that induced by phorbol 12-myristate 13-acetate (PMA). While TB-II also suppressed and enhanced the superoxide generations induced by fMLP and PMA, respectively, the compound significantly enhanced the AA-induced superoxide generation. TB-I enhanced the fMLP-induced superoxide generation in a low concentration range (peak at 40 microM), gave no effect on the PMA-induced superoxide generation and weakly enhanced the AA-induced superoxide generation. TA-III enhanced the fMLP-induced superoxide generation more than twice as much as that by TB-I in the same concentration range. However, TA-III enhanced the PMA-induced superoxide generation and most significantly suppressed the AA-induced superoxide generation.  相似文献   

9.
Neutrophil superoxide production can be potentiated by prior exposure to "priming" agents such as granulocyte/macrophage colony stimulating factor (GM-CSF). Because the mechanism underlying GM-CSF-dependent priming is not understood, we investigated the effects of GM-CSF on the phosphorylation of the cytosolic NADPH oxidase components p47(phox) and p67(phox). Preincubation of neutrophils with GM-CSF alone increased the phosphorylation of p47(phox) but not that of p67(phox). Addition of formyl-methionyl-leucyl-phenylalanine (fMLP) to GM-CSF-pretreated neutrophils resulted in more intense phosphorylation of p47(phox) than with GM-CSF alone and fMLP alone. GM-CSF-induced p47(phox) phosphorylation was time- and concentration-dependent and ran parallel to the priming effect of GM-CSF on superoxide production. Two-dimensional tryptic peptide mapping of p47(phox) showed that GM-CSF induced phosphorylation of one major peptide. fMLP alone induced phosphorylation of several peptides, an effect enhanced by GM-CSF pretreatment. In contrast to fMLP and phorbol 12-myristate 13-acetate, GM-CSF-induced phosphorylation of p47(phox) was not inhibited by the protein kinase C inhibitor GF109203X. The protein-tyrosine kinase inhibitor genistein and the phosphatidylinositol 3-kinase inhibitor wortmannin inhibited the phosphorylation of p47(phox) induced by GM-CSF and by fMLP but not that induced by phorbol 12-myristate 13-acetate. GM-CSF alone did not induce p47(phox) or p67(phox) translocation to the membrane, but neutrophils treated consecutively with GM-CSF and fMLP showed an increase (compared with fMLP alone) in membrane translocation of p47(phox) and p67(phox). Taken together, these results show that the priming action of GM-CSF on the neutrophil respiratory burst involves partial phosphorylation of p47(phox) on specific serines and suggest the involvement of a priming pathway regulated by protein-tyrosine kinase and phosphatidylinositol 3-kinase.  相似文献   

10.
We examined the effects of okadaic acid, a protein phosphatase 1 and 2A inhibitor, on superoxide generation in human neutrophils. Superoxide generation induced by fMLP was inhibited by low-dose okadaic acid (10–100 nM), but it had no effect on superoxide synthesis by PMA, and the fMLP-induced rise of the intracellular Ca2+ concentration was not affected by low-dose okadaic acid. These findings suggested that the inhibitory mechanism of okadaic acid might involve PKC-independent and Ca2+-independent pathways in fMLP induced NADPH oxidase activation. Both fMLP-stimulated phosphorylation of serine residues in p47phox and its translocation to the plasma membrane were suppressed by low-dose okadaic acid. On the other hand, PMA-induced phosphorylation and translocation of p47phox were not affected by such a low dose of okadaic acid. These findings suggested that fMLP induced phosphorylation of serine residues in p47phox was regulated by protein phosphatase 2A, and its phosphorylation was necessary for translocation and superoxide generation in fMLP-activated human neutrophils. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

12.
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.  相似文献   

13.
The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK) and protein kinase C (PKC), respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP) induced generation of superoxide anion and thromboxane B(2) (TXB(2)) in guinea-pig alveolar macrophages (AM). Genistein (3-100 muM) dose dependently inhibited FMLP (3 nM) induced superoxide generation in non-primed AM and TXB(2) release in non-primed or in lipopolysaccharide (LPS) (10 ng/ml) primed AM to a level > 80% but had litle effect up to 100 muM on phorbol myristate acetate (PMA) (10 nM) induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC(50) 0.21 +/- 0.10 muM) but had no effect on or potentiated (at 3 and 10 muM) FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 muM) inhibited primed TXB(2) release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.  相似文献   

14.
Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.  相似文献   

15.
Recently, we characterized a surface antigen (Z-1) of guinea pig macrophages by monoclonal anti-Z-1 antibody. The Z-1 antigen consists of two different polypeptide chains; alpha (140 kDa) and beta (95 kDa). This antigen is closely correlated with the phagocytic activity of the cells for zymosan and presumably functions as a receptor for zymosan. In the present study, the effect of phorbol 12-myristate 13-acetate (PMA) on the function of Z-1 was examined. Incubation of ortho-[32P]phosphate-labeled macrophages with PMA greatly increased the phosphorylation of the beta subunit of Z-1 but not that of the alpha subunit. Optimal phosphorylation was observed when cells were incubated with 300 ng/ml of PMA for 60-120 min. The PMA-induced phosphorylation was markedly suppressed by treatment of the macrophages with H-7, an inhibitor of protein kinase C. A chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP) also caused phosphorylation of the beta subunit. Unlike PMA, fMLP maximized the phosphorylation within 30 s. Purified Z-1 was an excellent substrate for the exogenously added protein kinase C only in the presence of both Ca2+ and phosphatidylserine. H-7 completely inhibited the in vitro phosphorylation. These data suggest that the beta subunit of Z-1 is phosphorylated by protein kinase C. The phosphorylation of Z-1 by PMA and fMLP coincided with inhibition of zymosan phagocytosis. A linear relationship was obtained between the level of phosphorylation of Z-1 and the degree of inhibition of zymosan phagocytosis induced by PMA. Thus, the results suggest that zymosan uptake is negatively regulated by protein kinase C-mediated phosphorylation of the beta subunit of Z-1.  相似文献   

16.
The effect of six compounds isolated from rhizome of Anemone raddeana on the superoxide generation in human neutrophils was investigated. The six compounds examined were 3-acetyloleanolic acid (AOA), oleanolic acid (OA), eleutheroside K (EK), oleanolic acid-3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-alpha-L-arabinopyranoside (Rd10), raddeanoside 12 (Rd12) and raddeanoside 13 (Rd13). AOA, OA, Rd12 and Rd13 suppressed the superoxide generation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) in a concentration-dependent manner. EK and Rd10 significantly enhanced the fMLP-induced superoxide generation in a specific narrow range of low concentration (0.5-0.75 microM), while these compounds more efficiently suppressed the superoxide generation than the other four compounds in other concentrations. In the case of superoxide generation induced by phorbol 12-myristate 13-acetate (PMA), Rd12, OA, EK and Rd10 dose-dependently suppressed the superoxide generation but AOA and Rd13 gave no effect. Arachidonic acid-induced superoxide generation was suppressed by EK, Rd10, Rd12 and Rd13, but was weakly enhanced by AOA and OA. Rd12 dose-dependently inhibited fMLP-induced tyrosyl phosphorylation of 123.0, 79.4, 60.3, 56.2 and 50.1 kDa proteins in human neutrophil. On the other hand, RD10 and EK enhanced the tyrosyl phosphorylation of these proteins in a low concentration range. These phenomena were parallel to the suppression of the fMLP-induced superoxide generations.  相似文献   

17.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

18.
Orie NN  Zidek W  Tepel M 《Life sciences》1999,65(20):2135-2142
This study examined the signaling mechanism involved in the generation of reactive oxygen species (ROS) in human lymphocytes activated by formyl-Met-Leu-Phenylalanine (fMLP; 200 nmol/L) or phorbol-myristate-acetate (PMA; 100 nmol/L). ROS were monitored spectrophotometrically using dichlorofluorescin diacetate. fMLP and PMA significantly increased ROS above the control levels (p<0.05 and 0.001, respectively). These increases were significantly inhibited by catalase, sodium azide, and dimethylsulfoxide but not by superoxide dismutase, suggesting that the ROS apparently included hydrogen peroxide, singlet oxygen and hydroxyl ion but not superoxide anion. PMA-induced responses were reduced by tyrphostin (p<0.01), ST-638 (p<0.05), KN-62 (p<0.001), bisindolylmaleimide (p<0.001), RO-31-8220 (p<0.001), and by LY-83583 (p<0.001), suggesting significant involvement of tyrosine kinase, calcium/calmodulin kinase II, protein kinase C and guanylyl cyclase. fMLP-induced responses were significantly reduced by only tyrphostin (p<0.001), ST-638 (p<0.05), and KN-62 (p<0.01). The results show that tyrosine kinase and calcium/calmodulin kinase II are common signalling components in the production of reactive oxygen species in activated lymphocytes.  相似文献   

19.
20.
Upon activation neutrophils release reactive oxygen intermediates such as superoxide anion (O2-) which are potent mediators of inflammation. Various agents elicit different responses; N-formylmethionylleucylphenylalanine (fMLP) (0.1 microM) provokes brisk generation of superoxide anion; leukotriene B4 (LTB4, 0.1 microM) is a poor stimulus. In contrast, phorbol myristate acetate (PMA, 1.6 microM) acting directly via protein kinase C is a potent stimulus for O2-. We compared the kinetics of appearance of various "second messengers" with the capacity of these ligands to elicit O2- generation. Kinetic analysis showed a two-phase response to membrane ligands; both an "early" (less than or equal to 15 s) and a "late" (greater than 15 s) increase in [3H]- and [14C]diacylglycerol (DG) was noted in response to fMLP. In contrast, LTB4 elicited only a rapid early increase in DG. The rise in DG evoked by PMA was late. Cytochalasin B increased the late phase of DG labeling elicited by all agonists. Moreover, comparison of increases in [3H]DG versus those of [14C]DG at early and late time points suggested that DG was not formed exclusively from the hydrolysis of polyphosphoinositides. Early increments of DG were also accompanied by addition of plasma membrane (ultrastructural morphometry); the ratio of surface perimeter to area increased rapidly (10 s) and persisted (60 s) in response to fMLP. Increments were more gradual in response to PMA. Kinetic analysis of protein phosphorylation was compared to the early and late increments of DG labeling. A 47,000 Mr protein was phosphorylated with kinetics consistent with the production of O2- and DG in response to fMLP (early and late) and PMA (late). In contrast, LTB4 provoked only early phosphorylation of this protein. The temporal pattern of the formation of diacylglycerol and the phosphorylation of proteins describe a dual signal. The data suggest that neutrophils require not only "triggering" (the rapid generation of a signal) but also "activation" (the maintenance of a signal) to sustain responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号