首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hwang JU  Suh S  Yi H  Kim J  Lee Y 《Plant physiology》1997,115(2):335-342
Actin antagonists have previously been shown to alter responses of Commelina communis stomata to physiological stimuli, implicating actin filaments in the control of guard cell volume changes (M. Kim, P.K. Hepler, S.-O. Eun, K.S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Since K+ channels in the guard cell play an important role in stomatal movements, we examined the possible regulation of K+-channel activities by the state of actin polymerization. Agents affecting actin polymerization altered light-induced stomatal opening and inward K+-channel activities measured by patch clamping in Vicia faba. Cytochalasin D, which induces depolymerization of actin filaments, promoted light-induced stomatal opening and potentiated the inward K+ current in guard cell protoplasts. Phalloidin, a stabilizer of filamentous actin, inhibited both light-induced stomatal opening and inward K+ current. Inward K+-channel activities in outside-out membrane patches showed responses to these agents that support results at the whole-cell current level, suggesting that cytochalasin D facilitates and phalloidin inhibits K+ influx in intact guard cells, thus resulting in enhancement and inhibition of stomatal opening, respectively. To our knowledge, this is the first report that provides evidence that actin filaments may regulate an important physiological process by modulating the activities of ion channels in plant cells.  相似文献   

2.
Kelly MN  Irving HR 《Planta》2003,216(4):674-685
Nod factors are lipo-chito-oligosaccharides secreted by rhizobia that initiate many responses in the root hairs of the legume hosts, culminating in deformed hairs. The heterotrimeric G-protein agonists mastoparan, Mas7, melittin, compound 48/80 and cholera toxin provoke root hair deformation, whereas the heterotrimeric G-protein antagonist pertussis toxin inhibits mastoparan and Nod factor NodNGR[S]- (from Rhizobiumsp. NGR234) induced root hair deformation. Another heterotrimeric G-protein antagonist, isotetrandrine, only inhibited root hair deformation provoked by mastoparan and melittin. These results support the notion that G-proteins are implicated in Nod factor signalling. To study the role of G-proteins at a biochemical level, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of Vigna unguiculata(L.) Walp. GTP competitively bound to the microsomal membrane fractions labelled with [(35)S]GTPgammaS, yielding a two-site displacement curve with displacement constants ( K(i)) of 0.58 micro M and 0.16 mM. Competition with either ATP or GDP revealed a one-site displacement curve with K(i) of 4.4 and 29 micro M, respectively, whereas ADP and UTP were ineffective competitors. The GTP-binding profiles of microsomal membrane fractions isolated from roots pretreated with either NodNGR[S] or the four-sugar, N- N'- N"- N'"-tetracetylchitotetraose (TACT) backbone of Nod factors were significantly altered compared with control microsomal fractions. To identify candidate proteins, membrane proteins were separated by SDS-PAGE and electrotransferred to nitrocellulose. GTP overlay experiments revealed that membrane fractions isolated from roots pretreated with NodNGR[S] or TACT contained two proteins (28 kDa and 25 kDa) with a higher affinity for GTPgammaS than control membrane fractions. Western analysis demonstrated that membranes from the pretreated roots contained more of another protein (~55 kDa) recognised by Galpha(common) antisera. These results provide pharmacological and biochemical evidence supporting the contention that G-proteins are involved in Nod factor signalling and, importantly, implicate monomeric G-proteins in this process.  相似文献   

3.
Stomata in the epidermis of terrestrial plants are important for CO2 absorption and transpirational water loss, and are also potential points of entry for pathogens. Stomatal opening and closure are controlled by distinct mechanisms. Arabidopsis stomata have been shown to close in response to bacteria and pathogen-associated molecular patterns (PAMPs) as part of PAMP-triggered immunity (PTI). Here we show that flg22, a PAMP derived from bacterial flagellin, also inhibits light-induced stomatal opening. Consistent with our observations on stomatal opening, flg22 inhibits the inward K+ channels (K+ (in) currents) of guard cells that mediate K+ uptake during stomatal opening. Similar to previously documented K+ current changes triggered by exogenous elevation of H(2)O(2) and nitric oxide (NO), with prolonged duration of flg22 exposure the outward K+ channels (K+ (out) currents) of guard cells are also inhibited. In null mutants of the flg22 receptor, FLS2, flg22 regulation of stomatal opening, K+ (in) currents, and K+ (out) currents is eliminated. flg22 also fails to elicit these responses in null mutants of the sole canonical G-protein alpha subunit, GPA1. The bacterial toxin, coronatine, produced by several pathogenic strains of Pseudomonas syringae, reverses the inhibitory effects of flg22 on both K+ (in) currents and stomatal opening, indicating interplay between plant and pathogen in the regulation of plant ion channels. Thus, the PAMP-triggered stomatal response involves K+ channel regulation, and this regulation is dependent on signaling via cognate PAMP receptors and a heterotrimeric G-protein. These new findings provide insights into the largely elusive signaling process underlying PTI-associated guard cell responses.  相似文献   

4.
Non-hydrolysable analogues of GTP, such as GTP gamma S and GMP-PNP, have previously been shown to inhibit the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [A1F4]-, a compound known to act on trimeric G-proteins. Addition of highly purified G-protein beta gamma subunits stimulated, in a differential manner, the cell-free formation of both CSVs and ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein alpha subunit in the TGN. We conclude that trimeric G-proteins regulate the formation of secretory vesicles from the TGN.  相似文献   

5.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The whole-cell patch clamp technique was used to test whether intracellular application of G-protein activators affect ionic currents in murine macrophages. Both the J774.1 macrophage-like cell line and primary bone marrow derived macrophages were used. Cells were bathed in Na Hanks' solution and intracellularly dialyzed (via the patch pipette) with K Hanks (145 mM KCl, < 100 nM Ca) plus or minus the G-protein activators GTP gamma S (10 microM), GppNHp (10 microM), or AIF4- (200 microM AlCl3 + 5 mM KF). In the absence of G-protein activators, only two K currents, an inwardly rectifying K current (Kir) and an outward, inactivating K current (Ko) were observed. In the presence of protein activators, two effects were observed: (i) the Kir conductance, which is stable for up to 30 min under control conditions, decayed twice as fast and (ii) an outwardly rectifying, noninactivating current appeared. The induced outward current appeared < 2 min after attaining the whole-cell patch clamp configuration. The current could be distinguished from the Kir and Ko currents on the basis of its direction of rectification (outward), barium sensitivity (> 1 mM), and kinetics (no time-dependent inactivation). Intracellular application of GTP (500 microM), GDP (500 microM), cAMP (100 microM + 0.5 mM ATP), or IP3 (20 microM) did not induce the current; 100 microM ATP gamma S activated a half-maximal amount of current. Induction of outward current by 10 microM GTP gamma S could be prevented by pre-exposing cells to pertussis toxin but not cholera toxin. This current is K selective since (i) its induction was accompanied by hyperpolarization of the cell toward EK, even after Kir had "washed out", (ii) it was present after > 90% of both intracellular and extracellular Cl were replaced by isethionate, and (iii) the induced outward conductance was absent when Ki was completely replaced by Cs, and was reduced by approximately 1/3 when [K]i was reduced by 1/3. Quinidine (1 mM) and 4-aminopyridine (10 mM) inhibited the current, but apamin (1 microM) and charybdotoxin (1 microM) did not.  相似文献   

7.
Opening of the stomata is driven by the light-activated plasma membrane proton pumping ATPase, although the activation and inactivation mechanism of the enzyme is not known. In this study, we show that the H+-ATPase in guard cells is reversibly inhibited by Ca2+ at physiological concentrations. Isolated microsomal membranes of guard cell protoplasts from fava bean exhibited vanadate-sensitive, ATP-dependent proton pumping. The activity was inhibited almost completely by 1 [mu]M Ca2+ with a half-inhibitory concentration at 0.3 [mu]M and was restored immediately by the addition of 1,2-bis(2-aminophenoxy)ethane N,N,N[prime],N[prime]-tetraacetic acid, a calcium chelating reagent. Similar reversible inhibition by Ca2+ was shown by the generation of electrical potential in the membranes. Activity of ATP hydrolysis was inhibited similarly by Ca2+ in the same membrane preparations. The addition of 1,2-bis(2-aminophenoxy)ethane N,N,N[prime],N[prime]-tetraacetic acid and EGTA, Ca2+ chelators, to epidermal peels of fava bean induced stomatal opening in the dark, and the opening was suppressed by vanadate. This suggests that the lowered cytosolic Ca2+ activated the proton pump in vivo and that the activated pump elicited stomatal opening. Inhibition of H+-ATPase by Ca2+ may depolarize the membrane potential and could be a key step in the process of stomatal closing through activation of the anion channels. Furthermore, similar inhibition of the proton pumping and ATP hydrolysis by Ca2+ was found in isolated plasma membranes of mesophyll cells of fava bean. These results suggest that Ca2+ regulates the activity of plasma membrane H+-ATPases in higher plant cells, thereby modulating stomatal movement and other cellular processes in plants.  相似文献   

8.
In locust skeletal muscle, FMRFamide-like peptides decrease a K+ conductance. Functional data suggest the involvement of G-proteins. For identification of G-protein alpha-subunits, membranes of locust skeletal muscle were probed with ADP-ribosylating bacterial toxins, the photoreactive GTP analog, [alpha-32P]GTP azidoanilide, and with antibodies against mammalian alpha-subunits. Multiple guanine nucleotide-binding proteins of approximately 24-95 kDa were detected. Pertussis toxin catalyzed the ADP-ribosylation of two proteins comigrating with the ADP-ribosylated alpha-subunits of the mammalian G-proteins Go and Gi. Cholera toxin promoted ADP-ribosylation of a protein comigrating with mammalian cholera toxin substrates (i.e., Gs alpha-subunits). An antibody against mammalian Go alpha-subunits detected a 54-kDa protein. Thus proteins with properties of mammalian G-protein subunits are present in insect muscle.  相似文献   

9.
Plasma membranes from bovine liver contain a phosphatidylinositol 4,5-bisphosphate-specific phospholipase C (PLC) activity that is activated by guanine nucleotides. The G-proteins involved retained their ability to activate bovine brain PLC-beta 1 in a guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent manner following extraction from the membranes with cholate and reconstitution with phospholipids. This reconstitution assay was used to purify the G-proteins by chromatography on heparin-Sepharose, DEAE-Sephacel, octyl-Sepharose, hydroxylapatite, Mono Q, and Sephacryl S-300 gel filtration. Gel electrophoresis showed that two alpha-subunits with molecular mass of 42 and 43 kDa were isolated to a high degree of purity, together with a beta-subunit. Neither alpha-subunit was a substrate for pertussis toxin-catalyzed ADP-ribosylation. Gel filtration of the final activity indicated an apparent molecular mass of 95 kDa, suggesting the presence of an alpha beta gamma heterotrimer. Immunological data revealed that the 42- and 43-kDa proteins were related to alpha-subunits of the Gq class recently purified from brain (Pang, I.-H., and Sternweis, P. C. (1990) J. Biol. Chem. 265, 18707-18712) and identified by molecular cloning (Strathmann, M., and Simon, M. I. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9113-9117). The activation of PLC-beta 1 by the purified G-protein preparation was specific for nonhydrolyzable guanine nucleotides, the efficacy decreasing in order GTP gamma S greater than guanylimidodiphosphate greater than guanylyl(beta,gamma-methylene)-diphosphonate. Half-maximal activation required 4 microM GTP gamma S suggesting that the affinity of the G-proteins for GTP analogues is low. The GTP gamma S-dependent activation of PLC-beta 1 required millimolar Mg2+ and was inhibited by guanosine 5'-O-(2-thiodiphosphate) and by excess beta gamma-subunits. Aluminum fluoride also activated PLC-beta 1 in the presence of the G-proteins. The G-proteins were inactive toward PLC-gamma 1 or PLC-delta 1. In summary, these findings identify two G-protein activators of PLC-beta 1 that have the properties of heterotrimeric G-proteins and are members of the Gq class.  相似文献   

10.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

11.
The role of nitric oxide (NO) during bicarbonate-induced stomatal closure was studied in the abaxial epidermis of Pisum sativum . A few experiments were done with 10 μ M ABA, for comparison. The presence of 2 m M sodium bicarbonate or 10 μ M ABA induced an increase of NO in guard cells. Elevation of NO by sodium nitroprusside induced stomatal closure and enhanced further the closure by bicarbonate. The bicarbonate induced increase in NO of guard cells, or stomatal closure was prevented partially by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide, an NO scavenger and N -nitro- l -Arg-methyl ester, an inhibitor of NO synthase (NOS). These results suggested that guard cells generated NO on exposure to bicarbonate and that NOS was involved at least partially in such NO production. Time course experiments revealed that on exposure to bicarbonate or ABA, the rise in guard cell NO production peaked within 10 min. Experiments using pharmacological compounds like wortmannin/LY294002 (phosphatidylinositol 3 kinase inhibitors), 1 H -(1,2,4)-oxadiazole-[4,3 a ]quinoxalin-1-one (guanylyl cyclase inhibitor), nicotinamide (cyclic adenosine diphosphate ribose antagonist), guanosine 5'-O-(2-thiodiphosphate) (G-protein antagonist) suggested a role of phosphatidylinositol 3-phosphate or G-proteins during bicarbonate-induced stomatal closure.  相似文献   

12.
Slow anion channels in the plasma membrane of guard cells have been suggested to constitute an important control mechanism for long-term ion efflux, which produces stomatal closing. Identification of pharmacological blockers of these slow anion channels is instrumental for understanding plant anion channel function and structure. Patch clamp studies were performed on guard cell protoplasts to identify specific extracellular inhibitors of slow anion channels. Extracellular application of the anion channel blockers NPPB and IAA-94 produced a strong inhibition of slow anion channels in the physiological voltage range with half inhibition constants (K1/2) of 7 and 10 [mu]M, respectively. Single slow anion channels that had a high open probability at depolarized potentials were identified. Anion channels had a main conductance state of 33 [plus or minus] 8 pS and were inhibited by IAA-94. DIDS, which has been shown to be a potent blocker of rapid anion channels in guard cells (K1/2 = 0.2 [mu]M), blocked less than 20% of peak slow anion currents at extracellular or cytosolic concentrations of 100 [mu]M. The pharmacological properties of slow anion channels described here differ from those recently described for rapid anion channels in guard cells, fortifying the finding that two highly distinct types or modes of voltage- and second messenger-dependent anion channel currents coexist in the guard cell plasma membrane. Bioassays using anion channel blockers provide evidence that slow anion channel currents play a substantial role in the regulation of stomatal closing. Interestingly, slow anion channels may also function as a negative regulator during stomatal opening under the experimental conditions applied here. The identification of specific blockers of slow anion channels reported here permits detailed studies of cell biological functions, modulation, and structural components of slow anion channels in guard cells and other higher plant cells.  相似文献   

13.
Several G-proteins (GTP-binding proteins) were identified by SDS/PAGE in the cytosol (105,000 g supernatant) and membrane fractions of the oestrogen-dependent human mammary-tumour cell line ZR-75-1. These proteins, with molecular masses in the range 18-29 kDa, specifically bind [alpha-32P]GTP, which can be displaced by unlabelled GTP, GDP and their non-hydrolysable analogues guanosine 5'-[delta-thio]triphosphate (GTP[S]) and guanosine 5'-[beta-thio]diphosphate (GDP[S]), but not by GMP, ATP, ADP, AMP and other unrelated nucleotides. The apparent dissociation constant for GTP was approx. 2 x 10(-8)M. Homogenization of ZR-75-1 cells in high-salt buffer (1 M-KCl), and successive washing of the membrane fraction, suggested that, among the major G-proteins found, the 18 kDa protein is predominantly soluble, whereas the 27-29 kDa complex is primarily bound to the membrane fraction under the experimental conditions employed. Possible translocation of these G-proteins between membrane and cytosol was analysed. No redistribution of the 27-29 kDa complex was observed, whereas GTP[S] in the presence of Mg2+ caused apparent translocation of the 18 kDa protein to the membrane fraction. This effect was specific for GTP and stable GTP analogues, whereas GDP, GMP, ATP, ADP, AMP and other unrelated nucleotides were ineffective. GTP[S] and guanosine 5'-[beta gamma-imido]-triphosphate (p[NH]ppG) were equally potent (apparent Kd approximately 5 x 10(-6)M), whereas GTP was rather weak. The nucleotide effect is temperature-, time- and concentration-dependent. The translocation process was reversible, slow, and reached its maximum between 30 and 60 min at 37 degrees C. The apparent translocation of this small G-protein from the cytosol to the membrane fraction, and the specific effect of GTP analogues, suggest that this process may have functional significance in mammary-tumour cells.  相似文献   

14.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

15.
Prolonged treatment with guanosine 5'-[gamma-thio]triphosphate (GTP gamma S; 5-16 h, 50 microM) of smooth muscle permeabilized with Staphylococcus aureus alpha-toxin down-regulated (abolished) the acute Ca2+ sensitization of force by GTP gamma S, AIF-4, phenylephrine, and endothelin, but not the response to phorbol dibutyrate or a phosphatase inhibitor, tautomycin. Down-regulation also abolished the GTP gamma S-induced increase in myosin light chain phosphorylation at constant [Ca2+] and was associated with extensive translocation of p21rhoA to the particulate fraction, prevented its immunoprecipitation, and inhibited its ADP ribosylation without affecting the immunodetectable content of G-proteins (p21rhoA, p21ras, G alpha q/11, G alpha i3, and G beta) or protein kinase C (types alpha, beta 1, beta 2, delta, epsilon, eta, theta, and zeta). We conclude that the loss of GTP gamma S- and agonist-induced Ca2+ sensitization through prolonged treatment with GTP gamma S is not due to a decrease in the total content of either trimeric (G alpha q/11, G alpha i3, and G beta) or monomeric (p21rhoA and p21ras) G-protein or protein kinase C but may be related to a structural change of p21rhoA and/or to down-regulation of its (yet to be identified) effector.  相似文献   

16.
Known nucleoside diphosphate kinases (NDPKs) are oligomers of 17-23-kDa subunits and catalyze the reaction N1TP + N2DP --> N1DP + N2TP via formation of a histidine-phosphorylated enzyme intermediate. NDPKs are involved in the activation of heterotrimeric GTP-binding proteins (G-proteins) by catalyzing the formation of GTP from GDP, but the properties of G-protein-associated NDPKs are still incompletely known. The aim of our present study was to characterize NDPK in soluble preparations of the retinal G-protein transducin. The NDPK is operationally referred to as transducin-NDPK. Like known NDPKs, transducin-NDPK utilizes NTPs and phosphorothioate analogs of NTPs as substrates. GDP was a more effective phosphoryl group acceptor at transducin-NDPK than ADP and CDP, and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a more effective thiophosphoryl group donor than adenosine 5'-[gamma-thio]triphosphate (ATP[S]). In contrast with their action on known NDPKs, mastoparan and mastoparan 7 had no stimulatory effect on transducin-NDPK. Guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) potentiated [3H]GTP[S] formation from [3H]GDP and ATP[S] but not [3H]GTP[S] formation from [3H]GDP and GTP[S]. Depending on the thiophosphoryl group acceptor and donor, [3H]NTP[S] formation was differentially regulated by Mg2+, Mn2+, Co2+, Ca2+ and Zn2+. [gamma-32P]ATP and [gamma-32P]GTP [32P]phosphorylated, and [35S]ATP[S] [35S]thiophosphorylated, a 36-kDa protein comigrating with transducin-beta. p[NH]ppG potentiated [35S]thiophosphorylation of the 36-kDa protein. 32P-labeling of the 36-kDa protein showed characteristics of histidine phosphorylation. There was no evidence for (thio)phosphorylation of 17-23-kDa proteins. Our data show the following: (a) soluble transducin preparations contain a GDP-prefering and guanine nucleotide-regulated NDPK; (b) transducin-beta may serve as a (thio)phosphorylated NDPK intermediate; (c) transducin-NDPK is distinct from known NDPKs and may consist of multiple kinases or a single kinase with multiple regulatory domains.  相似文献   

17.
Gailly P  Najimi M  Hermans E 《FEBS letters》2000,483(2-3):109-113
We previously demonstrated the functional coupling of the rat neurotensin receptor NTS1 with G-proteins on transfected CHO cell homogenates by showing modulation of agonist affinity by guanylyl nucleotides and agonist-mediated stimulation of [(35)S]GTP gamma S binding. In the present study, we observed that G(i/o)-type G-protein inactivation by pertussis toxin (PTx) resulted in a dramatic reduction of the NT-induced [(35)S]GTP gamma S binding whereas the effect of guanylyl nucleotide was almost not affected. As expected, NT-mediated phosphoinositide hydrolysis and intracellular calcium mobilization were not altered after PTx treatment. This suggests the existence of multiple signaling cascades activated by NT. Accordingly, using PTx and the PLC inhibitor U-73122, we showed that both signaling pathways contribute to the NT-mediated production of arachidonic acid. These results support evidence for a dual coupling of the NTS1 with PTx-sensitive and insensitive G-proteins.  相似文献   

18.
The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%.However,if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

19.
We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.  相似文献   

20.
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side and 50 mM K+ on the cytosolic side. The single-channel current saturated at ~2.6 pA. The relative permeability of the channel was in the range of a Pca2+:Pk+ ratio of 6:1. Divalent cations could act as charge carriers on the vacuolar side with a conductance series of Ba2+ > Mg2+ > Sr2+ > Ca2+ and a selectivity sequence of Ca2+ [approximately equals to] Ba2+ [approximately equals to] Sr2+ > Mg2+. The channel was gated open by cytosol-negative (physiological) transmembrane voltages, increases in vacuolar Ca2+ concentration, and increases in the vacuolar pH. The channel was potently inhibited by the Ca2+ channel blockers Gd3+ (half-maximal inhibition at 10.3 [mu]M) and nifedipine (half-maximal inhibition at 77 [mu]M). The stilbene derivative 4,4[prime]-diisothiocyano-2,2[prime]-stilbene disulfonate was also inhibitory (half-maximal inhibition for a 4-min incubation period at 6.3[mu]M). The 27-pS channel coresides in individual guard cell vacuoles with a less frequently observed 14-pS Ca2+ release channel that had similar, although not identical, voltage dependence and gating characteristics and a lower selectivity for Ca2+ over K+. The requirement for two channels with a similar function at the vacuolar membrane of guard cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号