首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two-component signal transduction systems are modular phosphorelay regulatory pathways common in prokaryotes. In the co-crystal structure of the Escherichia coli NarL signal output domain bound to DNA, we observe how the NarL family of two-component response regulators can bind DNA. DNA recognition is accompanied by the formation of a new dimerization interface, which could occur only in the full-length protein via a large intramolecular domain rearrangement. The DNA is recognized by the concerted effects of solvation, van der Waals forces and inherent DNA deformability, rather than determined primarily by major groove hydrogen bonding. These subtle forces permit a small DNA-binding domain to perturb the DNA helix, leading to major DNA curvature and a transition from B- to A-form DNA at the binding site, where valine on the recognition helix interacts unexpectedly with the polar major groove floor.  相似文献   

3.
The NarL and NarP proteins are homologous response regulators of Escherichia coli that control the expression of several operons in response to nitrate and nitrite. A consensus heptameric NarL DNA-binding sequence has been identified, and previous observations suggest that the NarP protein has a similar sequence specificity. However, some operons are regulated by NarL alone, whereas others are controlled by both NarL and NarP. In this study, DNase I footprinting experiments with the fdnG , nirB and nrfA control regions revealed that NarP only binds to heptamer sequences organized as an inverted repeat with a 2 bp spacing (7–2–7 sites). The NarL protein also binds to these 7–2–7 sites but, unlike NarP, also recognizes heptamers in other arrangements. These results provide an explanation for the regulation of some operons by NarL alone and for the different effects of NarL and NarP at common target operons, such as fdnG and nrfA . To investigate this differential DNA binding further, derivatives of the nrfA control region were constructed in which the spacing of the 7–2–7 heptamers was increased (7– n –7 constructs). Increasing the spacing to four or more basepairs abolished NarP binding and significantly reduced NarL binding. The NarL protein also had a reduced binding affinity for heptamers adjacent to the 7– n –7 heptamer pair, suggesting a decrease in cooperative interactions. In conclusion, we propose that 7–2–7 sites are preferred by both NarL and NarP. NarL can also recognize other binding site arrangements, an ability that appears to be lacking in NarP.  相似文献   

4.
5.
The pfl operon is expressed at high levels anaerobically. Growth of Escherichia coli in the presence of nitrate or nitrite led to a 45% decrease in expression when cells were cultivated in rich medium. Nitrate repression, however, was significantly enhanced (sevenfold) when the cells were cultured in minimal medium. Regulation of pfl expression by nitrate was dependent on the NarL, NarP, NarQ, and NarX proteins but independent of FNR, ArcA, and integration host factor, which are additional regulators of pfl expression. Strains unable to synthesize any one of the NarL, NarP, NarQ, or NarX proteins, but retaining the capacity to synthesize the remaining three, exhibited essentially normal nitrate regulation. In contrast, narL narP and narX narQ double null mutants were devoid of nitrate regulation when cultured in rich medium but they retained some nitrate repression (1.3-fold) when grown in minimal medium. By using lacZ fusions, it was possible to localize the DNA sequences required to mediate nitrate repression to the pfl promoter-regulatory region. DNase I footprinting studies identified five potential binding sites for the wild-type NarL protein in the pfl promoter-regulatory region. Specific footprints were obtained only when NarL was phosphorylated with acetyl phosphate before the binding reaction was performed. Each of the protected regions contained at least one heptamer sequence which has been deduced from mutagenesis studies to be essential for NarL binding (K. Tyson, A. Bell, J. Cole, and S. Busby, Mol. Microbiol. 7:151-157, 1993).  相似文献   

6.
DNA binding proteins of two-component signal transduction systems in microorganisms are activated by phosphorylation through an unknown mechanism. NarL is an example from the nitrate/nitrite signal transduction system of Escherichia coli. NarL consists of N- and C-terminal domains, the latter of which contains the DNA binding elements. To explore the mechanism of activation, single nitroxide side chains were introduced, one at a time, at nine different sites throughout the C-terminal domain to monitor the tertiary structure and the status of the surface in contact with the N-terminal domain. In addition, three pairs of doubly labeled proteins were prepared to monitor the interdomain distance using the magnetic dipolar interaction. The results of these site-directed spin-labeling studies reveal that phosphorylation at a distant site in the N-terminal domain triggers domain separation, likely by a hinge-bending motion. This in turn presents key elements of the C-terminal domain for docking to the DNA target in the configuration described in the recent crystal structure. The data also imply that a single conformation of unphosphorylated NarL exists in solution, and there is no detectable equilibrium between the closed and open conformations.  相似文献   

7.
8.
9.
10.
The nuclease activity of 1,10-phenanthroline copper ion was targeted to a specific sequence by attachment of the ligand to the 5' or 3' end of octathymidylates. An acridine derivative was also attached to the other end of the oligothymidylate-phenanthroline conjugate. The duplex formed by the oligothymidylate with its complementary sequence was stabilized by intercalation of the acridine derivative. The reaction induced by 3-mercaptopropionic acid led to a very localized cleavage of a 27-nucleotide-long DNA fragment containing a (dA)8 sequence. At high NaCl concentration or in the presence of spermine, cleavage of the single-stranded 27-mer fragment occurred on both sides of the target sequence. This was ascribed to the formation of a triple helix involving two 1,10-phenanthroline-octathymidylate strands that adopt an antiparallel orientation with respect to each other. When a 27-mer duplex was used as a substrate, cleavage sites were observed on both strands. The location of the cleavage sites led us to conclude that the octathymidylate was bound to the (dA)8.(dT)8 sequence in a parallel orientation with respect to the (dA)8-containing strand. This result reflects the ability of thymine to form two hydrogen bonds with an adenine already engaged in a Watson-Crick base pair. This study shows that it is possible to design DNA-binding oligodeoxynucleotides that could selectively recognize and cleave polypurine-polypyrimidine sequences in double-stranded DNA.  相似文献   

11.
Ferric uptake repressor (Fur) proteins regulate the expression of iron homeostasis genes in response to intracellular iron levels. In general, Fur proteins bind with high affinity to a 19-bp inverted repeat sequence known as the Fur box. An alignment of 19 operator sites recognized by Bacillus subtilis Fur revealed a different conserved 15-bp (7-1-7) inverted repeat present twice within this 19-bp consensus sequence. We demonstrated using electrophoretic mobility shift assays that this 7-1-7 inverted repeat comprises a minimal recognition site for high-affinity binding by Fur. The resulting revised consensus sequence is remarkably similar to a related 7-1-7 inverted repeat sequence recognized by PerR, a Fur paralog. Our analysis of the affinity and stoichiometry of DNA binding by B. subtilis Fur, together with a reinterpretation of previously described studies of Escherichia coli Fur, supports a model in which the 19-bp Fur box represents overlapping recognition sites for two Fur dimers bound to opposite faces of the DNA helix. The resulting recognition complex is reminiscent of that observed for the functionally related protein DtxR. Like Fur, DtxR contains a helix-turn-helix DNA-binding motif, recognizes a 19-bp inverted repeat sequence, and has a typical DNase I footprint of approximately 30 bp. By envisioning a similar mode of DNA recognition for Fur, we can account for the internal symmetries noted previously within the Fur box, the tendency of Fur to extend into adjacent regions of DNA in a sequence-selective manner, and the observed patterns of DNA protection against enzymatic and chemical probes.  相似文献   

12.
13.
Photolytic cleavage of the nitrogen-nitrogen single bond in benzaldehyde phenylhydrazones produced aminyl (R2N*) and iminyl (R2C=N*) radicals. This photochemical property was utilized in the development of hydrazones as photo-induced DNA-cleaving agents. Irradiation with 350 nm UV light of arylhydrazones bearing substituents of various types in a phosphate buffer solution containing the supercoiled circular phiX174 RFI DNA at pH 6.0 resulted in single-strand cleavage of DNA. Attachment of the electron-donating OMe group to arylhydrazones increased their DNA-cleaving activity. Results from systematic studies indicate that both the aminyl and the iminyl radicals possessed DNA-cleaving ability.  相似文献   

14.
Microcalorimetry and UV-vis spectroscopy were used to conduct thermodynamic and kinetic investigations of the scission of calf thymus DNA catalyzed by bleomycin A5 (BLM-A5) in the presence of ferrous ion and oxygen. The molar reaction enthalpy for the cleavage, the Michaelis-Menten constant for calf thymus DNA and the turnover number of BLM-A5 were calculated by a novel thermokinetic method for an enzyme-catalyzed reaction to be -577 +/- 19 kJ.mol-1, 20.4 +/- 3.8 microm and 2.28 +/- 0.49 x 10-2 s-1, respectively, at 37.0 degrees C. This DNA cleavage was a largely exothermic reaction. The catalytic efficiency of BLM-A5 is of the same order of magnitude as that of lysozyme but several orders of magnitude lower than those of TaqI restriction endonuclease, NaeI endonuclease and BamHI endonuclease. By comparing the molar enthalpy change for the cleavage of calf thymus DNA induced by BLM-A5 with those for the scission of calf thymus DNA mediated by adriamycin and by (1,10-phenanthroline)-copper, it was found that BLM-A5 possessed the highest DNA cleavage efficiency among these DNA-damaging agents. These results suggest that BLM-A5 is not as efficient as a DNA-cleaving enzyme although the cleavage of DNA by BLM-A5 follows Michaelis-Menten kinetics. Binding of BLM-A5 to calf thymus DNA is driven by a favorable entropy increase with a less favorable enthalpy decrease, in line with a partial intercalation mode involved in BLM-catalyzed breakage of DNA.  相似文献   

15.
Oligodeoxynucleotides can be synthesized by using the alpha anomers of nucleoside units. Oligo-alpha-deoxynucleotides are resistant to nucleases and could be used to regulate gene expression in vivo. Theoretical calculations were carried out to determine the conformational energy of an oligomeric alpha-beta duplex (dA)5.(dT)5 where the adenosine strand contains natural beta-deoxyribonucleotides and the thymidine strand contains synthetic alpha-deoxyribonucleotides. These calculations predict that in the more stable B-like conformation the two strands of the double helix should run parallel to each other whereas in the more stable A-like conformation the two strands should adopt an antiparallel orientation. In order to test these predictions 1,10-phenanthroline was covalently attached to the 5'-end of an alpha-octathymidylate. In the presence of copper ions and a reducing agent (beta-mercaptopropionic acid), the (phenanthroline)2-copper complex generates OH. radicals that cleave phosphodiester bonds in the complementary sequence to which the alpha-octathymidylate is bound. By use of a 27mer oligo-beta-deoxynucleotide containing an octadeoxyadenylate sequence as a target for the phenanthroline-substituted alpha-(dT)8, cleavage was observed on the 5'-side of the (dA)8 sequence, demonstrating that the alpha-beta DNA-DNA hybrid formed a double helix with parallel orientation of the two strands. The same result was obtained when alpha-(dT)8 was bound to beta-(dA)n with n = 8 or 10. When a beta-oligoriboadenylate was used as a target, cleavage occurred exclusively on the 3'-side of the (rA)8 or (rA)10 sequence, indicating that the alpha-beta DNA-RNA hybrid formed a double helix with an antiparallel orientation of the two strands. When a phenanthroline-substituted beta-octathymidylate was used instead of the alpha-octathymidylate, an antiparallel double helix was formed independently of whether the target beta sequence was a DNA or an RNA.  相似文献   

16.
A conformational change in the DNA plasmid ColE1 appears to occur upon specific binding of the restriction endonuclease EcoRI. Enzyme association alters the chiral discrimination found in binding metallointercalators to DNA sites. The complexes tris(1,10-phenanthroline)ruthenium(II), Ru(phen)3(2+), tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II), Ru(DIP)3(2+), and tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III), Co(DIP)3(3+), in general, bind stereoselectively to DNA helices, with enantiomers possessing the delta configuration bound preferentially by right-handed B-DNA. In the presence of EcoRI, however, this enantioselectivity is altered. The chiral intercalators, at micromolar concentrations, inhibit the reaction of EcoRI, but for each enantiomeric pair it is the lambda enantiomer, which binds only poorly to a B-DNA helix, that inhibits EcoRI preferentially. Kinetic studies in the presence of lambda-Ru(DIP)3(2+) indicate that the enzyme inhibition occurs as a result of the lambda enantiomer binding to the enzyme-DNA complex as well as to the free enzyme. Furthermore, photolytic strand cleavage experiments using Co(DIP)3(3+) indicate that the metal complex interacts directly at the protein-bound DNA site. Increasing concentrations of bound EcoRI stimulate photoactivated cleavage of the DNA helix by lambda-Co(DIP)3(3+), until a protein concentration is reached where specific DNA recognition sites are saturated with enzyme. Thus, although lambda-Co(DIP)3(3+) does not bind closely to the DNA in the absence of enzyme, specific binding of EcoRI appears to alter the DNA structure so as to permit the close association of the lambda isomer to the DNA helix. Mapping experiments demonstrate that this association leads to photocleavage of DNA by the cobalt complex at or very close to the EcoRI recognition site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
DNA binding by the effector domain (NarLC) of the response regulator, NarL, is modulated by the phosphorylation state of the receiver domain (NarLN). The receiver domain appears to block the site of DNA binding in the nonphosphorylated state. Phosphorylation is proposed to disrupt this interaction, causing the effector domain to be released and free to bind DNA (Baikalov, I., Schroder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R. P., and Dickerson, R. E. (1996) Biochemistry 35, 11053-61). To better understand this modulation, we analyzed the interaction between the two domains in the absence of a polypeptide linkage. Using multidimensional NMR, we mapped chemical shift changes that occurred during a titration between the two isolated domains. Specific residues in NarLC exhibit large chemical shift changes upon the addition of NarLN. These residues are primarily at the interface between the two domains as seen in the crystal structure. Using the residues with the largest chemical shift changes, we observed a dissociation constant of 88 +/- 7 microM. In the presence of 10 mM MgCl(2), the affinity is reduced 4-fold to about 350 microM. This work shows that the domains interact in trans and that this interaction, while fairly weak, provides a way to monitor the energetics of domain-domain interaction in this system. Phosphorylation of NarLN by a small-molecule phosphate donor, phosphoramidate, decreases this interaction about 25-fold from the nonphosphorylated sample. The results support the model that the mechanism of activation of NarL involves a disruption of the interdomain interface and suggests that the linker is not necessary for the transmission of signal across the domain interface. The linker does play a role in increasing the local concentration of the domains and therefore increasing the amount of closed conformation with respect to the open conformation. We estimate the levels of open conformation to be low (about 1%) in the nonphosphorylated state in the absence of magnesium ion and much higher in the phospho state (near 50%). This modulation of the open or active state via the interaction at the interface may also be applicable to other multidomain response regulator proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号