首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Buchholz  M Bishop 《BioTechniques》2001,31(4):906-8, 910, 912, 914, 916, 918
We have developed a novel way to use the Cre/loxP system for in vitro manipulation of DNA and a technique to clone DNA into circular episomes. The method is fast, reliable, and allowsflexible cloning of DNA fragments into episomes containing a loxP site. We show that a loxP site can serve as a universal target site to clone a DNA fragment digested with any restriction enzyme(s). This technique abolishes the need for compatible restriction sites in cloning vectors and targets by generating custom-designed 5' 3', or blunt ends in the desired orientation and reading frame in the vector Therefore, this method eliminates the limitations encountered when DNA fragments are cloned into vectors with a confined number of cloning sites. The 34-bp loxP sequence assures uniqueness, even when large episomes are manipulated. We present three examples, including the manipulation of a bacterial artificial chromosome. Because DNA manipulation takes place at a loxP site, we refer to this technique as loxP-directed cloning.  相似文献   

2.
Solutions of DNA, spin-labelled with the radical cation of chlorpromazine, were used to produce oriented species of fibres pulled from a gel obtained by ultracentrifugation. The electron spin resonance spectra, recorded at X and Q band frequencies, are given for both gel and fibres; 14N hyperfine coupling parameters were obtained by computer fitting. The spectra are explained in terms of a strongly immobilized label having one principal hyperfine tensor axis parallel to the axis of the DNA helix, and the preferential orientation of the chlorpromazine ions with their planes perpendicular to the DNA helical axis.  相似文献   

3.
Monovalent cation binding sites on nucleic acids in solution can be localized using the isotopically labeled ammonium ion (15NH4+) as a probe in high resolution NMR spectroscopy experiments. The application of this technique to a series of DNA duplexes reveals a preference for the binding of ammonium cations in the minor groove of A-tract sequences. These results are consistent with a recent report which indicates that some solvent electron densities previously identified as water molecules in DNA X-ray crystal structures are partially occupied by sodium ions. The sequence-specific nature of monovalent cation binding sites demonstrated here for A-tract DNA provides an explanation for the origin of sequence-directed bending.  相似文献   

4.
Physical parameters, describing the state of chromatinized DNA in living mammalian cells, were revealed by in situ fluorescence dynamic properties of ethidium in its free and intercalated states. The lifetimes and anisotropy decays of this cationic chromophore were measured within the nuclear domain, by using the ultra-sensitive time-correlated single-photon counting technique, confocal microscopy, and ultra-low probe concentrations. We found that, in living cells: 1) free ethidium molecules equilibrate between extracellular milieu and nucleus, demonstrating that the cation is naturally transported into the nucleus; 2) the intercalation of ethidium into chromatinized DNA is strongly inhibited, with relaxation of the inhibition after mild (digitonin) cell treatment; 3) intercalation sites are likely to be located in chromatin DNA; and 4) the fluorescence anisotropy relaxation of intercalated molecules is very slow. The combination of fluorescence kinetic and fluorescence anisotropy dynamics indicates that the torsional dynamics of nuclear DNA is highly restrained in living cells.  相似文献   

5.
M Egli  L D Williams  Q Gao  A Rich 《Biochemistry》1991,30(48):11388-11402
We describe the three-dimensional X-ray structure of a complex of spermine bound to a Z-DNA duplex, [d(CGCGCG)]2, in the absence of any inorganic polyvalent cations. We have crystallized the DNA hexamer d(CGCGCG) in the exclusion of magnesium and other polyvalent ions and solved its structure at 1.0-A resolution. In the crystal of this pure-spermine form of Z-DNA, the relative orientation, position, and interactions of the DNA differ from the arrangement uniformly observed in over a dozen previously reported Z-DNA hexamers. Moreover, the conformation of the Z-DNA hexamer in this structure varies somewhat from those found in earlier structures. The DNA is compressed along the helical axis, the base pairs are shifted into the major groove, and the minor groove is more narrow. The packing of spermine-DNA complexes in crystals suggests that the molecular basis for the tendency of spermine to stabilize compact DNA structures derives from the capacity of spermine to interact simultaneously with several duplexes. This capacity is maximized by both the polymorphic nature and the length of the spermine cation. The length and flexibility of spermine and the dispersion of charge-charge, hydrogen-bonding, and hydrophobic bonding potential throughout the molecule maximize the ability of spermine to interact simultaneously with different DNA molecules.  相似文献   

6.
Two series of duplex DNA oligomers were prepared having an anthraquinone derivative (AQ) covalently linked at a 5′-terminus. Irradiation of the AQ at 350 nm leads to injection of an electron hole (radical cation) into the DNA. The radical cation migrates through the DNA causing reaction primarily at Gn sequences. In one series, GA tandem mispairs are inserted between GG steps to assess the effect of the mispair on the transport of the radical cation, reaction (damage) caused by the radical cation at the mispair, and repair of the resulting damage by formamidopyrimidine DNA glycosylase (Fpg). In the second series, a bulged guanine in a G3C2 sequence is interposed between the GG steps. These experiments reveal that neither G/A tandem mispairs nor bulged guanines are significant barriers to long-range charge migration in DNA. The radical cation does not cause reaction at guanines in the G/A tandem mispair. Reaction does occur at the bulged guanine, but it is repaired by Fpg.  相似文献   

7.
A simple and efficient method for chemical mutagenesis of DNA.   总被引:7,自引:5,他引:2       下载免费PDF全文
A simple and efficient procedure for the generation of random GC to AT transition mutations in a specific DNA segment is described. A restriction fragment is inserted in each orientation into an M13 vector, single-stranded virion DNA from each recombinant phage is treated with methoxylamine, and, after reannealing of the mutagenized strands, a double-stranded restriction fragment is obtained. This methoxylamine-derivatized DNA segment is then joined with linearized M13 RF DNA, competent E. coli is transfected, and mutations are directly identified by sequencing of the phage DNA. Using this technique, single and double nucleotide substitutions were generated at a frequency greater than 50% in a 56-base pair segment of the signal codons of the TEM beta-lactamase.  相似文献   

8.
Orientation of DNA in agarose gels.   总被引:2,自引:1,他引:1       下载免费PDF全文
J Borejdo 《Biophysical journal》1989,55(6):1183-1190
An orientation of the lambda DNA during the electrophoresis in agarose gels was measured by a microscopic linear dichroism technique. The method involved staining the DNA with the dye ethidium bromide and measuring under the microscope the polarization properties of the fluorescence field around the electrophoretic band containing the nucleic acid. It was first established that the fluorescence properties of the ethidium bromide-DNA complex were the same in agarose gel and in a solution. Then the linear dichroism method was used to measure the dichroism of the absorption dipole of EB dye bound to lambda DNA. In a typical experiment the orientation of two-tenth of a picogram (2 x 10(-13)g) of DNA was measured. When the electric field was turned on, the dichroism developed rapidly and assumed a steady state value which increased with the strength of the field and with the size of DNA. A linear dichroism equation related the measured dichroism of fluorescence to the mean orientation of the absorption dipole of ethidium bromide and to an extent to which the orientation of this dipole deviated from the mean. The observed development of dichroism in the presence of an electric field was interpreted as an alignment of DNA along the direction of the field. The increase in the steady state value of dichroism with the rise in the strength of the field and with the increase of the size of DNA was interpreted as a better alignment of DNA along the direction of the field and as a smaller deviation from its mean orientation.  相似文献   

9.
The yeast 2-micron circle plasmid encodes a protein, FLP, that mediates site-specific recombination across the two FLP-binding sites of the plasmid. We have used a novel technique, "exonuclease-treated substrate analysis," to determine the minimal duplex DNA sequence needed for this recombination event. A linear DNA containing two FLP sites in a direct orientation was treated with the double-strand specific 3'-exonuclease, exonuclease III, to generate molecules with a nested set of single-strand deletions that extended into one of the FLP sites. The DNA was then end-labeled at the sites of the deletions and used as a substrate for recombination in vitro. FLP-mediated recombination between two FLP sites excised a restriction endonuclease cleavage site from the DNA. Comparison of the fragments produced by restriction enzyme digestion of untreated and FLP-treated DNA showed to the nucleotide the duplex DNA sequence required for FLP-mediated recombination. To examine essential sequences in the opposite DNA strand, similar experiments were done using the 5'-exonuclease encoded by phage T7. The minimal essential duplex DNA sequence lies within the region of the FLP site that was previously shown to be protected from nuclease digestion in the presence of FLP. A modified form of this technique can be used to study the minimal sequence requirements of site-specific DNA binding proteins.  相似文献   

10.
A small RNA segment from the influenza virus strain A/NT/60/68 (H3N2) was converted to cDNA and then to double-stranded DNA using synthetic oligodeoxynucleotide primers. The double-stranded form was cloned into the bacteriophage M1 3mp7. Clones yielding single-strand recombinant templates in opposite orientation were sequenced by the Sanger dideoxynucleotide chain termination technique. The small viral RNA was 422 nucleotides long and the evidence indicated that it was formed by internal deletion of segment 3. It also contained sequences homologous to segment 1.  相似文献   

11.
In buffers containing selected transition metal salts, DNA binds to mica tightly enough to be directly imaged in the buffer in the atomic force microscope (AFM, also known as scanning force microscope). The binding of DNA to mica, as measured by AFM-imaging, is correlated with the radius of the transition metal cation. The transition metal cations that effectively bind DNA to mica are Ni(II), Co(II), and Zn(II), which have ionic radii from 0.69 to 0.74 A. In Mn(II), ionic radius 0.82 A, DNA binds weakly to mica. In Cd(II) and Hg(II), respective ionic radii of 0.97 and 1.1 A, DNA does not bind to mica well enough to be imaged with the AFM. These results may to relate to how large a cation can fit into the cavities above the recessed hydroxyl groups in the mica lattice, although hypotheses based on hydrated ionic radii cannot be ruled out. The dependence of DNA binding on the concentrations of the cations Ni(II), Co(II), or Zn(II) shows maximal DNA binding at approximately 1-mM cation. Mg(II) does not bind DNA tightly enough to mica for AFM imaging. Mg(II) is a Group 2 cation with an ionic radius similar to that of Ni(II). Ni(II), Co(II), and Zn(II) have anomalously high enthalpies of hydration that may relate to their ability to bind DNA to mica. This AFM assay for DNA binding to mica has potential applications for assaying the binding of other polymers to mica and other flat surfaces.  相似文献   

12.
13.
The understanding, on a molecular level, of the mechanisms responsible for the improved separation in DNA gel electrophoresis when using modulated electric fields requires detailed information about conformational distribution and dynamics in the DNA/gel system. The orientational order due to electrophoretic migration ("electrophoretic orientation") is an interesting piece of information in this context that can be obtained through linear dichroism spectroscopy [M. Jonsson, B. Akerman, and B. Nordén, (1988) Biopolymers 27, 381-414]. The technique permits measurement of the orientation factor S of DNA (S = 1 corresponds to perfect orientation) within an electrophoretic zone in the gel during the electrophoresis. It is reported that the degree of orientation of T2 DNA [170 kilo base pairs (kpb)] is considerable (S = 0.17 in 1% agarose at 10 V/cm) compared to relatively modest orientations of short fragments found earlier (for 23-kbp DNA, S = 0.03 in 1% agarose at 10 V/cm), showing that large DNA coils are substantially deformed during the migration. Growth and relaxation dynamics of the orientational order of the T2 DNA are also reported, as functions of gel concentration (0.3-2%), electric field strength (0-40 V/cm), and pulse characteristics. The rise profile of the DNA orientation, when applying a constant field, is a nonmonotonic function that displays a pronounced overshoot, followed by a minor undershoot, before it reaches steady-state orientation (after 12 s in 1% agarose, 9 V/cm). The orientational relaxation in absence of field shows a multiexponential decay in a time region of some 10 s, when most of the DNA anisotropy has disappeared. A surprising phenomenon is a memory over minutes of the DNA/gel system to previous pulses: with two consecutive rectangular pulses (of the same polarity), the orientational overshoot and undershoot as a response to the second pulse are significantly reduced compared to the first pulse. The time required to recover 90% of their amplitudes is typically 1200 s (1% agarose, 9 V/cm), which may be compared to the time required to relax 90% of the DNA orientation, which is only 6 s. The major part of the over- and undershoot recovery is thus a reorganization of a system in which DNA is already randomly oriented. The different response amplitudes and relaxation times, including the amplitude and recovery time of the overshoot, of the orientational order of DNA in the electrophoretic gel have been studied as functions of gel concentration and field strength. The results are discussed against relevant theories of polymer dynamics.  相似文献   

14.
We investigated a phenomenon of ultrasonic cleavage of DNA complexed with transition metal cations Ag(I), Cu(II) and Hg(II). We found the statistically significant dependence of relative intensity of cleavage on cation type and concentration. Each cation may cause two different types of distortion in the DNA double-helix depending on whether it binds to major or minor DNA groove. The intensity of ultrasonic cleavage decreases where the cation binds to the major DNA groove; the intensity of cleavage increases where the cation binds to the minor DNA groove and disturbs the hydrogen bonds of complementary base pairs or where it intercalates between bases. Both types of DNA distortion can affect the intensity of N?S intercon-version of deoxyribose.  相似文献   

15.
Förster resonance energy transfer (FRET) is a technique commonly used to unravel the structure and conformational changes of biomolecules being vital for all living organisms. Typically, FRET is performed using dyes attached externally to nucleic acids through a linker that complicates quantitative interpretation of experiments because of dye diffusion and reorientation. Here, we report a versatile, general methodology for the simulation and analysis of FRET in nucleic acids, and demonstrate its particular power for modelling FRET between probes possessing limited diffusional and rotational freedom, such as our recently developed nucleobase analogue FRET pairs (base–base FRET). These probes are positioned inside the DNA/RNA structures as a replacement for one of the natural bases, thus, providing unique control of their position and orientation and the advantage of reporting from inside sites of interest. In demonstration studies, not requiring molecular dynamics modelling, we obtain previously inaccessible insight into the orientation and nanosecond dynamics of the bases inside double-stranded DNA, and we reconstruct high resolution 3D structures of kinked DNA. The reported methodology is accompanied by a freely available software package, FRETmatrix, for the design and analysis of FRET in nucleic acid containing systems.  相似文献   

16.
Thymineless death strikes cells unable to synthesize DNA precursor dTTP, with the nature of chromosomal damage still unclear. Thymine starvation stalls replication forks, whereas accumulating evidence indicates the replication origin is also affected. Using a novel DNA labeling technique, here we show that replication slowly continues in thymine-starved cells, but the newly synthesized DNA becomes fragmented and degraded. This degradation apparently releases enough thymine to sustain initiation of new replication bubbles from the chromosomal origin, which destabilizes the origin in a RecA-dependent manner. Marker frequency analysis with gene arrays 1) reveals destruction of the origin-centered chromosomal segment in RecA(+) cells; 2) confirms origin accumulation in the recA mutants; and 3) identifies the sites around the origin where destruction initiates in the recBCD mutants. We propose that thymineless cells convert persistent single-strand gaps behind replication forks into double-strand breaks, using the released thymine for new initiations, whereas subsequent disintegration of small replication bubbles causes replication origin destruction.  相似文献   

17.
The cohering telomeres of Oxytricha.   总被引:16,自引:7,他引:9       下载免费PDF全文
Y Oka  C A Thomas  Jr 《Nucleic acids research》1987,15(21):8877-8898
We have studied the process by which purified Oxytricha macronuclear DNA associates with itself to form large aggregates. The various macronuclear DNA molecules all have the same terminal or telomeric DNA sequences that are shown below. 5' C4A4C4A4C4--mean length----G4T4G4T4G4T4G4T4G4 G4T4G4T4G4T4G4T4G4-----2.4 kb------C4A4C4A4C4. When incubated at high concentrations, these telomeric sequences cohere with one another to form an unusual structure--one that is quite different from any DNA structure so far described. The evidence for this is the following: 1) These sequences cohere albeit slowly, in the presence of relatively high concentrations of Na+, and no other cation tested. This contrasts with the rapid coherence of complementary single-chain terminals of normal DNA (sticky ends) which occurs in the presence of any cation tested. 2) If the cohered form is transferred into buffers containing a special cation, K+, it becomes much more resistant to dissociation by heating. We estimate that K+ increases the thermal stability by 25 degrees or more. The only precedent known (to us) for a cation-specific stabilization is that seen in the quadruplex structure formed by poly I. The thermal stability of double helical macronuclear DNA depends on the cation concentration, but not the cation type. Limited treatment with specific nucleases show that the 3' and 5'-ended strands are essential for the formation of the cohering structure. Once in the cohered form, the telomeric sequences are protected from the action of nucleases. Coherence is inhibited by specific, but not by non-specific, synthetic oligomers, and by short telomeric fragments with or without their terminal single chains. We conclude that the coherence occurs by the formation of a novel condensed structure that involves the terminal nucleotides in three or four chains.  相似文献   

18.
The data showing the features of the DNA compactization process in PEG-containing solutions of chlorides of different alkaline metals (LiCl, KCl, RbCl and CsCl) and an ammonium salt (CH3-(CH2)17-N-(CH3)3Br) are presented. The data indicate that the formation of a compact form of the double-stranded DNA in PEG-containing water-salt solutions depends not only on the PEG concentration and ionic strength but on tha cation nature as well. The compactization occurs most easily in the presence of Na+-ions. This indicates a specific character of interaction between Na+-ions and DNA phosphate groups which may be due to an optimum structural fit between the hydrated Na+-ions and orientation of the phosphate groups in the DNA molecule. The nature of forces involved in the processes of the intramolecular compactization and intermolecular aggregation of double-stranded DNA molecules in water-salt solution is discussed. The difference between the effect of Na+ and that of K+-ions on the compactization process at the ionic strengths close to physiological values makes it possible to suggest that the changes of the tertiary structure of double-stranded DNA which accompany its function in vivo may take place under conditions of a decreased water activity at the expense of relatively slight changes in ion composition of the water surrounding DNA.  相似文献   

19.
PKD2 is one of the two genes mutated in ADPKD (autosomal-dominant polycystic kidney disease). The protein product of PKD2, polycystin-2, functions as a non-selective cation channel in the endoplasmic reticulum and possibly at the plasma membrane. Hydrophobicity plots and its assignment to the TRP (transient receptor potential) family of cation channels suggest that polycystin-2 contains six transmembrane domains and that both the N- and C-termini extend into the cytoplasm. However, no experimental evidence for this model has so far been provided. To determine the orientation of the different loops of polycystin-2, we truncated polycystin-2 within the predicted loops 1-5 and tagged the constructs at the C-terminus with an HA (haemagglutinin) epitope. After transient expression and selective membrane permeabilization, immunofluorescence staining for the HA epitope revealed that loops 1, 3 and 5 extend into the lumen of the endoplasmic reticulum or the extracellular space, whereas loops 2 and 4 extend into the cytoplasm. This approach also confirmed the cytoplasmic orientation of the N- and C-termini of polycystin-2. In accordance with the immunofluorescence data, protease protection assays from microsomal preparations yielded protected fragments when polycystin-2 was truncated in loops 1, 3 and 5, whereas no protected fragments could be detected when polycystin-2 was truncated in loops 2 and 4. The results of the present study therefore provide the first experimental evidence for the topological orientation of polycystin-2.  相似文献   

20.
The recombinant plasmid M6 contains a DNA sequence from the cellular slime mold Dictyostelium discoideum which hybridizes to actin messenger RNA. The plasmid contains 6 kilobase pairs (kb) of Dictyostelium DNA inserted into a pMB9 vector. Ten cleavage sites for four different restriction enzymes have been mapped. Other work has shown that a central restriction fragment, 1.7 kb in length, contains sequences repeated about fifteen times in the genome, and that this fragment hybridizes to actin mRNA. Heteroduplexes between M6 and pDd actin 2, a chromosomal plasmid which contains two copies of the actin repeated sequence, were used to define the position of this repeat in M6. Two plasmids with inserts of cDNA made from actin mRNA were heteroduplexed to M6 to define the position and orientation of the message complementary region. This orientation was confirmed by inserting the fragment into phage λ and determining which of the separated λ strands was complementary to actin mRNA. An electron microscope technique has been developed for identifying poly(dA) sequences by hybridizing to them dBrU polymers attached to suitable markers. The mapping of the (dA) tracts that occur in the Dictyostelium insert of M6 is described here. The positions of the A:T tracts do not correlate in any simple way with the position of the actin gene sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号