首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the immunological responses induced by human interferon β (IFNβ) gene transfer in human gliomas produced in the brains of nude mice. A suspension of human glioma U251-SP cells was injected into the brains of nude mice. The IFNβ gene was transferred by intratumoral injection with cationic liposomes or cationic liposomes associated with anti-glioma monoclonal antibody (immunoliposomes). When intratumoral injection of liposomes or immunoliposomes containing the human IFNβ gene was performed every second day for a total of six injections, starting 7 days after tumor transplantation, complete disappearance of the tumor was observed in six of seven mice that had received liposomes and in all seven mice receiving immunoliposomes. In addition, experimental gliomas injected with immunoliposomes were much smaller than those injected with ordinary liposomes following delayed injections beginning 14 days after transplantation. An immunohistochemical study of the treated nude mouse brains revealed a remarkable induction of natural killer (NK) cells expressing asialoGM1 antigen. To investigate the significance of NK cells in the antitumor effect, we injected liposomes or immunoliposomes containing the human IFNβ gene into tumors in nude mice depleted of NK cells by irradiation and anti-asialoGM1 antibody administration. The antitumor effect of the liposomes or immunoliposomes was abolished. Subsequent subcutaneous glioma challenge of the nude mice after intracerebral tumor implantation and gene transfer resulted in no subcutaneous tumor growth. These results suggest that the induction of NK cells is important in the cytocidal effect of liposomes or immunoliposomes containing the human IFNβ gene upon experimental gliomas. Received: 10 February 1998 / Accepted: 1 September 1998  相似文献   

2.
Transforming growth factor β (TGFβ) is an immunosuppressive cytokine that contributes to the immunological escape of tumor cells. In a previous study we demonstrated that inhibition of TGFβ production by EMT6 murine mammary tumor cells expressing an antisense TGF-β transgene reduces their tumorigenicity. On the basis of this observation we hypothesized that down-regulation of TGFβ production coupled with interferon γ (IFNγ) stimulation would induce an immune response superior to that generated by either strategy alone. In this study, EMT6 tumor cells expressing antisense TGFβ were transduced with the murine IFNγ gene. Tumor cells expressing either or both transgenes grew more slowly than mock-transduced tumors. Dual-transgene-expressing tumor cells were more immunogenic than tumor cells expressing either transgene alone. Studies in mice depleted of T cell subsets indicated that CD8+ T cells are the primary effectors of the antitumor activity observed. These results suggest that down-regulation of immunosuppression combined with cytokine-mediated immune augmentation is a useful strategy to improve antitumor immunity. Received: 6 October 1998 / Accepted: 15 January 1999  相似文献   

3.
Alterations in the immunogenic properties of tumor cells frequently accompany selection for multipledrug-resistant (MDR) variants. Therefore, studies were performed to examine the hypothesis that overexpression of membrane P-glycoprotein, commonly observed in MDR tumor cells, is associated with enhanced immunogenic properties. Immunogenicity was determined by (a) the ability of drug-sensitive parental UV2237M fibrosarcoma cells and drug-resistant UV2237M variant cells to immunize normal mice against rechallenge with parental tumor cells and (b) the ability of normal syngeneic mice to reject cell inocula that caused progressive tumor growth in immunocompromised mice. Variant UV2237M cell lines included subpopulations selected for a six- to ten-fold increase in mRNA for P-glycoprotein and expression of the MDR phenotype (resistance to doxorubicin) and cells sensitive to doxorubicin (and no expression of MDR properties) but resistant to ouabain. All UV2237M drug-resistant cells were highly immunogenic in immunocompetent mice, regardless of their MDR phenotype. Additional studies showed that CT-26 murine adenocarcinoma cells, sensitive or resistant to doxorubicin (expressing high levels of P-glycoprotein), injected into normal syngeneic Balb/c mice produced rapidly growing tumors. The data do not demonstrate a correlation between the immunogenic properties of drug-resistant tumor cells and the expression of P-glycoprotein.Supported in part by core grant CA-16672 R35-CA42 107 from the National Cancer Institute, and postdoctoral fellowship grant PF-3446 from the American Cancer Society (R. R.)  相似文献   

4.
 Previously we reported the malignant progression of QR-32, a regressor-type tumor clone, following co-implantation with foreign bodies (gelatin sponge or plastic plate) in normal syngeneic C57BL/6 mice. We also reported that the progression of QR-32 cells by a gelatin sponge was significantly inhibited in the mice administered polysaccharide K (PSK) and that PSK induced an increase of radical scavengers, especially manganese superoxide dismutase (Mn-SOD), locally at the site of tumor tissues. In this study, to reveal the possible mechanism by which PSK induced Mn-SOD in the tumor tissues, we examined the mRNA expression and protein levels of inflammatory cytokines in the tissues. We found that mRNAs of tumor necrosis factor α (TNFα) and interleukin-1α (IL-1α) were considerably expressed in both PSK-treated and phosphate-buffered-saline-treated tumors, and that the mRNA expression and protein level of interferon γ (IFNγ) increased in the tumor tissues treated with PSK. In vitro treatment of QR-32 cells with IFNγ did not significantly increase the production of Mn-SOD; however, the combination of IFNγ with TNFα increased the Mn-SOD production more effectively than did any of the cytokines used singly. Furthermore, we observed the down-regulation of the mRNA expression and protein level of transforming growth factor β (TGFβ) in the tumor tissues treated with PSK, and that in vitro treatment of QR-32 cells with TGFβ decreased the production of Mn-SOD. These results suggest that PSK suppresses the progression of QR-32 cells by increasing Mn-SOD via the modulation of inflammatory cytokines; that is, by decreasing TGF-β and increasing IFN-γ. Received: 7 October 1997 / Accepted: 31 March 1998  相似文献   

5.
 Interferon-γ(IFNγ)-induced up-regulation of MHC class I expression on tumor cells can induce a potent CD8-mediated antitumor response. Consequently, many investigators have proposed IFNγ gene transfection as a means to immunogenize tumor cells and to vaccinate against metastatic disease. In this study, we demonstrate that transfection of the IFNγ gene in a BW5147 variant (LiDlo) with low MHC class I expression results in a selective induction of H-2Dk but unaltered H-2Kk expression. In earlier reports we demonstrated a positive correlation between H-2Dk expression and enhanced metastatic potential of BW variants. In accordance with these observations, we observed that intravenous inoculation of LiDlo(IFNγ) variants into syngeneic AKR mice led to enhanced metastasis as compared to parental LiDlo and LiDlo(neo) control transfectants. Tumor cells, derived from local subcutaneous tumors or sporadic metastases from mice inoculated with LiDlo tumor cells, were found to up-regulate H-2Dk selectively. Anti-asialoGM1 treatment of AKR mice allowed rapid experimental metastasis formation by the LiDlo and LiDlo(neo) variants, indicating that natural killer (NK) cells control the metastatic behavior of these tumor cells. This was corroborated by in vitro cytotoxicity experiments, demonstrating that LiDlo and LiDlo(neo) tumor cells were NK-sensitive, while the BW IFNγ transfectants became resistant to lymphokine-activated killer cells and poly(I)·poly(C)-induced NK cells. We thus conclude that (a) IFNγ up-regulates selectively the MHC class I antigen H-2Dk, (b) H-2Dk governs susceptibility towards NK cells, and (c) NK susceptibility determines the experimental metastatic behavior of BW tumor cells. Received: 2 May 1996/Accepted: 21 May 1996  相似文献   

6.
 Interleukin(IL)-15, which uses IL-2 receptor (R) β and γ chains for signal transduction, shares many of the biological activities of IL-2. We examined the effects of exogenous IL-15 on protection in a murine malignant pleurisy model using BALB/c mice and syngeneic MethA fibrosarcoma (MethA). Intrapleural administration of IL-15 significantly prolonged the survival time of mice after an intrapleural inoculation of MethA, whereas the same dose of IL-2 did not. The in vivo antitumor effect of IL-15 was synergistically enhanced by additive administration of IL-12. Combination therapy of IL-15 and IL-12 protected mice from death from bloody pleural fluid. Such treatment induced marked increases in the number of CD3-IL-2Rβ+ cells corresponding to natural killer (NK) cells and the production of interferon γ (IFNγ) by T cells in the thoracic exudate cells (TEC). Administration of anti-IFNγ mAb partly inhibited the protective effect of a combination of IL-15 and IL-12. A tumor-neutralizing (Winn) assay revealed that the antitumor activity of effector cells in the TEC was abrogated by treatment with anti-CD8 mAb or anti-asialoGM1 Ab plus complement. Thus, treatment with IL-15 in combination with IL-12 may enhance the activities of NK and CD8+ T cells in the TEC, providing strong antitumor activity against the malignant pleurisy. These results suggest that IL-15 together with IL-12 may have potential for the immunotherapy of some types of malignant pleurisy. Received: 13 July 1999 / Accepted: 3 December 1999  相似文献   

7.
 The expression of insulin-like growth factor I receptor (IGF-IR) antisense mRNA inhibits the growth of C6 rat glioblastoma cells both in vitro and in vivo [Cancer Res (1994) 54: 2218]. Moreover, the injection of C6 cells expressing an antisense mRNA to the IGF-IR into syngeneic rats prevents subsequent wild-type tumorigenesis and induces regression of established tumors. For the study of immune function in syngeneic rats, C6 cells expressing either IGF-IR sense or IGF-IR antisense mRNA were injected and splenic lymphocyte function analyzed in vitro after 2 weeks. Cytotoxic, CD8+ lymphocytes from animals injected with IGF-IR antisense cells, but not from those treated with IGF-IR sense cells, proliferated in vitro in response to wild-type C6 cells. Wild-type C6 cells or IGF-IR-sense-RNA-expressing cells rapidly formed tumors upon subcutaneous injection into athymic nude mice. IGF-IR antisense cells were weakly tumorigenic, exhibiting a six- to tenfold increase in tumor latency. Injection of IGF-IR antisense C6 cells mildly delayed the development of wild-type tumors, and did not induce the regression of established wild-type C6 tumors in athymic nude mice. Thus, these findings demonstrate the stimulation of a cellular immune response in rats following the injection of IGF-IR antisense cells. However, studies of athymic nude mice indicate that expression of IGF-IR antisense mRNA also inhibits C6 cells tumorigenicity by additional mechanisms. Received: 27 January 1995 / Accepted: 15 November 1995  相似文献   

8.
 We have investigated the effect of interleukin-2 (IL-2) secretion by KHT sarcoma cells upon their vaccine potential in syngeneic C3Hf/He mice. Parental KHT tumor cells were transfected with the plasmid pBCMG-neo-mIL-2 to obtain a transfectant KHT-2-3-7 that secreted 20 units IL-2. KHT-2-3-7 cells elicited protective immunity in only 10% of the immunized mice, compared with 40% of mice immunized with irradiated parental KHT tumor colls. To minimize the contribution of potential antigenic differences between the KHT-2-3-7 transfectant and parental KHT cells, a clone of KHT cells (KHT-C21) was isolated and used in subsequent experiments. A number of transfectants secreting various amounts of IL-2, ranging from 2 units to 200 units, were obtained following transfection of KHT-C21 cells with plasmid pBCMG-neo-mIL-2. Two of the transfectants, C21-13-4 and C21-1, each secreting 200 units IL-2, elicited protective immunity in a significantly lower fraction of mice than did irradiated KHT-C21 parental tumor cells (P<0.0l). Two other transfectants C21-10 and C21-11, secreting 2 and 23 units IL-2 respectively, also showed lower vaccine potential compared with the parental KHT-C21 clone (P<0.05). To minimize further any role for potential antigenic or other molecular differences between the individual transfectants and the clonal KHT-C21 parental cells in lowering their vaccine efficacy, mice were immunized with a mixture of five transfectants, and the results again showed significantly lower vaccine efficacy of the mixture compared with the irradiated parental C21 cells (P<0.0l). In view of published studies showing enhanced or unchanged efficacy of IL-2-secreting tumor cell vaccines, our observation of the lower vaccine potential of IL-2-transduced tumor cells indicates that the vaccine efficacy of IL-2-secreting tumor cells depends on the individual tumor. Such variability/unpredictability would hamper the clinical use of IL-2-secreting tumor cells as vaccines. Received: 23 April 1996 / Accepted: 7 February 1997  相似文献   

9.
 We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon γ (IFNγ) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFNγ and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFNγ secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to up-regulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor. Received: 30 January 1996 / Accepted: 22 March 1996  相似文献   

10.
 We have previously shown that levamisole increases the cytotoxic, cytostatic, and proliferative activity of murine nonparenchymal liver cells (NPC) in vitro. We have also shown that the nonadherent subpopulation of NPC, which are composed predominantly of T lymphocytes, is very responsive to this agent when administered to mice. Kupffer cells or immigrant macrophages are also responsive to levamisole but to a lesser extent. These findings prompted us to investigate changes in cytokine production by NPC following-treatment of mice with levamisole (25 mg/kg, i.p.), which may help explain the observed alterations in the immune functions of these cells. We found that levamisole treatment of mice causes a threefold increase in production of interferon (IFN) α/β by adherent NPC (more than 80% – 90% Kupffer cells) in vitro. When IFN α/β was added to cultured cells, it decreased the proliferative capacity of liver T cells in a dose-dependent manner. In contrast, the addition of anti-IFNα/β was shown to augment levamisole-induced proliferation of unfractionated NPC and Kupffer cells. NPC production of interleukin 1 (IL-1) and interleukin-6 (IL-6) in vitro was also increased threefold following treatment of mice with levamisole. IL-6 added in vitro to cells significantly augmented levamisole-induced proliferation of liver T cells while anti-IL-6 reduced proliferative activity to control levels. These findings suggested that IFNα/β, IL-6, and IL-1 play important regulatory roles in controlling the proliferative response of murine liver-associated T lymphocytes to levamisole. Finally, the proliferation of bone marrow cells was increased in mice given 5-fluorouracil (5FU). On the other hand, the proliferation of NPC was dramatically suppressed when 5FU was administered. However, the proliferation of these cells was restored when levamisole was given after 5FU. Received: 27 November 1995 / Accepted: 16 October 1996  相似文献   

11.
 To explore the mechanisms of immuno-modulatory activities of bleomycin, we investigated interferon γ (IFNγ) mRNA expression, tumor necrosis factor α (TNFα) production, nitric oxide (NO) production and macrophage tumoricidal activities in rats bearing KDH-8 hepatoma cells, which secreted a large amount of transforming growth factor β (TGFβ), and these processes in KDH-8 tumor-bearing rats treated with bleomycin. We found that IFNγ mRNA expression, TNFα production, NO production and macrophage cytotoxic activities were lower in the KDH-8-bearing rats than in normal rats. On the other hand, low-dose bleomycin restored the macrophage cytotoxic activities, NO production, IFNγ mRNA expression and TNFα production in the KDH-8-bearing rats. In vitro experiments showed that KDH-8-derived TGFβ decreased the IFNγ mRNA expression and TNFα production in splenocytes, and NO production in peritoneal macrophages. These results suggest that low-dose bleomycin restored the cytokine production and macrophage tumoricidal activities in the KDH-8-bearing rats by decreasing KDH-8-derived TGFβ. Received: 14 October 1996 / Accepted: 22 July 1997  相似文献   

12.
 Interleukin(IL)-1 differs from most other cytokines in its lack of a signal sequence. This results in intracellular retention of the immature proform. The release of IL-1 has been shown to be restricted predominantly to activated monocytes and macrophages and to be associated with apoptosis of the producer cell. These features have limited the investigation of IL-1 in early immune responses. In order to study the biological effects of local IL-1β release during an antitumour immune response, we used B16 mouse melanoma cells transduced with mature human IL-1β cDNA constructs. To obtain a released form of human IL-1β (ssIL-1β), the signal sequence from the related IL-1 receptor antagonist was ligated to the cDNA that encoded the mature form of IL-1β. When cells of the poorly immunogenic B16 melanoma cell line were transduced with IL-1β by retroviral infection, high levels of the protein were detected intracellularly, whereas cells transduced with IL-1β containing the signal sequence secreted most of their protein. The in vitro growth of the melanoma cells was unaffected by the IL-1β or ssIL-1β gene transfer. In contrast, the in vivo subcutaneous tumour growth of the ssIL-1β-transduced B16 cells in syngeneic C57BL/6 mice was significantly reduced compared with the IL-1β- and the mock-transduced controls. Immunohistochemical analysis revealed the infiltration of macrophages to be strong in B16/ssIL-1β, moderate in B16/IL-1β and minimal in control tumours. Furthermore, a moderate infiltration of CD4+ cells and of scattered dendritic cells was detected in B16/ssIL-1β tumours whereas very few or no CD4+ cells and dendritic cells were seen in the B16/IL-1β or control tumours. Following in vivo growth, all the tumours up-regulated ICAM-1 on their cell surfaces. However, the percentage of ICAM-1-expressing cells was two- to fourfold higher in B16/ssIL-1β tumours compared to the control. The data suggest that IL-1β acts in vivo, either directly or indirectly, as a chemotactic factor for monocytes, T helper cells and dendritic cells. This supports IL-1β having a regulatory effect on tumour growth when locally released in the tumour area. Received: 12 November 1996 / Accepted: 6 May 1997  相似文献   

13.
A20 is a B cell lymphoma that constitutively expresses the costimulatory molecule B7-2 yet grows readily as a tumor in syngeneic BALB/c mice. We have compared the tumorigenicity of A20 variants expressing either B7-1 (A20/B7-1) or B7-2 (A20/B7-2) with an A20 variant expressing B7-1 and B7-2 with 4-1BBL (A20/4-1BBL), a costimulatory member of the TNF family. Mice injected with tumors expressing the vector backbone (A20/CMV) or B7-1 developed tumors within 25 days of s.c. injection. In contrast, mice injected with A20/4-1BBL were tumor free for the 150-day follow-up period, while 25% of mice injected with A20/B7-2 developed tumors. Tumorigenicity experiments using nude mice indicated the requirement for T cells for variant rejection. Almost all mice that resisted the initial tumor challenge were resistant to further challenge with the parental tumor. Splenocytes from these mice showed high CTL lytic activity against the parental tumor, A20, as well as the syngeneic BALB/c lymphoma K46J, but showed background levels of lytic activity against the congenic SCID thymoma line ST-D2 or the allogeneic EL4 thymoma. In vitro blocking experiments with anti-B7-1 plus anti-B7-2 and/or soluble 4-1BB receptor showed B7-1, B7-2, and 4-1BBL all contributed to the CTL activity. Thus, the data show that neither B7-1 or B7-2 alone can confer full immunogenicity to the A20 lymphoma but that the addition of 4-1BBL results in a tumor that is highly immunogenic and can confer long-lasting protection against challenge with parental tumor in vivo.  相似文献   

14.
 In the present study we describe a novel murine tumor model in which the highly malignant murine B cell lymphoma 38C13 has been transduced with the cDNA encoding human tumor-associated antigen HER2/neu. This new cell line (38C13-HER2/neu) showed stable surface expression but not secretion of human HER2/neu. It also maintained expression of the idiotype (Id) of the surface immunoglobulin of 38C13, which serves as another tumor-associated antigen. Surprisingly, spontaneous tumor regression was observed following s.c. but not i.v. injection of 38C13-HER2/neu cells in immunocompetent syngeneic mice. Regression was more frequently observed with larger tumor cell challenges and was mediated through immunological mechanisms because it was not observed in syngeneic immunodeficient mice. Mice that showed complete tumor regression were immune to challenge with the parental cell line 38C13 and V1, a variant of 38C13 that does not express the Id. Immunity could be transferred with sera, suggesting that an antibody response mediated rejection and immunity. Continuously growing s.c. tumors as well as metastatic tumors obtained after the i.v. injection of 38C13-HER2/neu maintained expression of human HER2/neu, which can serve as a target for active immunotherapy. As spontaneous tumor regression has not been observed in other human murine models expressing human HER2/neu, our results illustrate the enormous differences that can exist among different murine tumors expressing the same antigen. The present model provides a useful tool for the study of the mechanisms of protective immunity to B cell lymphoma and for the evaluation of different therapeutic approaches based on the stimulation or suppression of the immune response. Received: 2 August 2000 / Accepted: 20 September 2000  相似文献   

15.
Summary We determined whether the systemic administration of viable Mycobacterium bovis organisms (BCG) or a lipophilic derivative of muramyl tripeptide (MTP-PE) would lead to the activation of antitumor properties in murine Kupffer cells (KC). KC-mediated tumor cytolysis was determined by the release of radiolabeled nuclear breakdown products of target cells. KC harvested from either C57BL/6 or C3H/HEN mice treated with saline exhibited no cytotoxicity against syngeneic B16 melanoma or UV-2237 fibrosarcoma cells. In contrast, KC harvested from BCG or MTP-PE-injected mice were highly cytotoxic against the tumor targets, as measured by an in vitro radiorelease assay. The demonstration that the administration of macrophage activators can generate in situ tumoricidal activity in KC suggests that these cells can be important in the control of hepatic micrometastases.  相似文献   

16.
Here we show that low-dose cyclophosphamide (CY), that depends for its therapeutic effectiveness on the immunopotentiating activity of the drug for T cell-mediated tumor-eradicating immunity, is curative for ~80% of wild-type (WT) mice bearing a large s.c. MOPC-315 tumor, but only for ~10% of IFN-α/βR−/− mice bearing a large s.c. MOPC-315 tumor. Histopathological examination of the s.c. tumors of such mice on day 4 after the chemotherapy revealed that the low dose of CY led to accumulation of T lymphocytes in both the WT and the IFN-α/βR−/− mice. However, in the CY treated tumor bearing WT mice the T lymphocytes were present throughout the tumor mass and in direct contact with tumor cells, but in the CY treated tumor bearing IFN-α/βR−/− mice most of the T lymphocytes remained in blood vessels. In addition to being important for CY-induced transendothelial migration of T lymphocytes into the tumor mass, we show here that signaling via the IFN-α/βR is also important for CY-induced control of metastatic tumor progression in the spleen and liver of the tumor bearing mice. Finally, CY cured tumor bearing WT mice were resistant to a subsequent challenge with MOPC-315 tumor cells, but the few CY cured tumor bearing IFN-α/βR−/− mice were not. Thus, signaling via the IFN-α/βR on host cells in MOPC-315 tumor bearers is important for CY-induced: (a) transendothelial migration of T lymphocytes into the tumor mass and the eradication of the primary tumor, (b) control of metastatic tumor progression, and (c) resistance to a subsequent tumor challenge. This work was supported by Research Grant 03-19 from the American Cancer Society-Illinois Division.  相似文献   

17.
 Normal peripheral blood mononuclear cells (PBMC responders) were cultured together with non-irradiated allogeneic PBMC (more than 95% leukaemia blasts) derived from patients with acute leukaemia (referred to as leukaemic PBMC stimulators). Cytokine secretion was determined as cytokine concentrations in supernatants. Both normal PBMC and enriched CD4+ and CD8+ T cells responded to allostimulation with interferon (IFNγ) secretion. Interleukin-1 (IL-1) receptor antagonist and IL-2-neutralizing antibodies decreased IFNγ secretion. Exogenous IL-1β, IL-2 and IL-7 increased allostimulated IFNγ secretion, whereas decreased levels were seen in the presence of IL-6, IL-10 and granulocyte-colony-stimulating factor (G-CSF). During allorecognition IFNγ -neutralizing antibodies decreased acute myelogenous leukaemia (AML) blast secretion of G-CSF. We conclude that (i) both CD4+ and CD8+ T cells show allostimulated cytokine secretion in response to allogeneic stimulator cells containing a dominating population of native, cytokine-secreting leukaemia blasts, and (ii) IFNγ released during this response can modulate the function of allogeneic AML blasts. Received: 4 June 1996 / Accepted: 15 October 1996  相似文献   

18.
Interferon-γ-inducing factor/interleukin-18 is a novel cytokine that reportedly augments natural killer (NK) activity in human and mouse peripheral blood mononuclear cell cultures in vitro and has recently been designated IL-18. In this study, IL-18 exhibited significant antitumor effects in BALB/c mice challenged intraperitoneally (i.p.) with syngeneic Meth A sarcoma when administered i.p. on days 1, 2 and 3 after challenge. Intravenous (i.v.) administration also induced antitumor effects in the tumor-bearing mice; however, subcutaneous (s.c.) administration did not. When mice were twice pretreated with 1 μg IL-18 3 days and 6 h before tumor challenge, all mice survived whereas control mice died within 3 weeks of challenge. Inhibitory effects on Meth A cell growth in vitro were not observed with either IL-18 or interferon γ. The effects of IL-18 pretreatment were abrogated by abolition of NK activity after mice had been injected with anti-asialo GM1 antibody 48 h before and, 24 h and 72 h after tumor challenge. Mice pretreated with IL-18 and surviving tumor challenge resisted rechallenge with Meth A cells but could not reject Ehrlich ascites carcinoma, and spleen cells from the resistant mice, but not control mice, exhibited cytotoxic activity against Meth A cells in vitro after restimulation with mitomycin C-treated Meth A cells for 5 days. The effector cells in the spleen cell preparations from resistant mice appear to be CD4+ cells because cytolytic activity was significantly inhibited after depletion of this subset by monoclonal antibodies and complement. In conclusion, IL-18 exhibits in vivo immunologically (primarily NK) mediated antitumor effects in mice challenged with syngeneic Meth A sarcoma and induces immunological memory and the generation of cytotoxic CD4+ cells. Received: 17 September 1996 / Accepted: 8 November 1996  相似文献   

19.
 We have isolated a novel type of natural tumoricidal product from the basidiomycete strain, Agaricus blazei Murill. Using the double-grafted tumor system in Balb/c mice, treatment of the primary tumor with an acid-treated fraction (ATF) obtained from the fruit bodies resulted in infiltration of the distant tumor by natural killer (NK) cells with marked tumoricidal activity. As shown by electrophoresis and DNA fragmentation assay, the ATF also directly inhibited tumor cell growth in vitro by inducing apoptotic processing; this apoptotic effect was also demonstrated by increased expression of the Apo2.7 antigen on the mitochondrial membranes of tumor cells, as shown by flow-cytometric analysis. The ATF had no effect on normal mouse splenic or interleukin-2-treated splenic mononuclear cells, indicating that it is selectively cytotoxic for the tumor cells. Cell-cycle analysis demonstrated that ATF induced the loss of S phase in MethA tumor cells, but did not affect normal splenic mononuclear cells, which were mainly in the G0G1 phase. Various chromatofocussing purification steps and NMR analysis showed the tumoricidal activity to be chiefly present in fractions containing (1→4)-α-D-glucan and (1→6)-β-D-glucan, present in a ratio of approximately 1:2 in the ATF (molecular mass 170 kDa), while the final purified fraction, HM3-G (molecular mass 380 kDa), with the highest tumoricidal activity, consisted of more than 90% glucose, the main component being (1→4)-α-D-glucan with (1→6)-β branching, in the ratio of approximately 4:1. Received: 27 August 1997 / Accepted 22 December 1997  相似文献   

20.
Absence of CD4+ T cell help has been suggested as a mechanism for failed anti-tumor cytotoxic T lymphocytes (CTL) response. We examined the requirement for CD4+ T cells to eliminate an immunogenic murine fibrosarcoma (6132A) inoculated into the peritoneal cavity. Immunocompetent C3H mice eliminated both single and repeat intraperitoneal (IP) inoculums, and developed high frequency of 6132A-specific interferon-γ (IFNγ)-producing CTL in the peritoneal cavity. Adoptive transfer of peritoneal exudate cells (PEC) isolated from control mice, protected SCID mice from challenge with 6132A. In contrast, CD4 depleted mice had diminished ability to eliminate tumor and succumbed to repeat IP challenges. Mice depleted of CD4+ T cells lacked tumor-specific IFNγ producing CTL in the peritoneal cavity. Adoptive transfer of PEC from CD4 depleted mice failed to protect SCID mice from 6132A. However, splenocytes isolated from same CD4 depleted mice prevented tumor growth in SCID mice, suggesting that 6132A-specific CTL response was generated, but was not sustained in the peritoneum. Treating CD4 depleted mice with agonist anti-CD40 antibody, starting on days 3 or 8 after initiating tumor challenge, led to persistence of 6132A-specific IFNγ producing CTL in the peritoneum, and eliminated 6132A tumor. The findings suggest that CTL can be activated in the absence of CD4+ T cells, but CD4+ T cells are required for a persistent CTL response at the tumor site. Exogenous stimulation through CD40 can restore tumor-specific CTL activity to the peritoneum and promote tumor clearance in the absence of CD4+ T cells.Supported in part by grants from Children’s Hospital of Wisconsin Foundation, Society of University Surgeons Foundation, Florence and Marshall Schwid Foundation, Elsa Pardee Foundation, Kathy Duffy Fogarty Fund of the Greater Milwaukee Foundation (JS) and NIH grant RO1-CA-37156 (HS); Andrew Lodge and Ping Yu have contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号