首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A cDNA library in pBR322 was prepared with cytoplasmic poly(A)+RNA from mouse liver cells. From 1 to 1.5% of clones hybridized to either B1 or B2 ubiquitous repetitive sequences. Several clones hybridizing to a B2 repeat were partially sequenced. The full-length B2 sequence was found at the 3'-end of abundant 20S poly(A)+RNA (designated as B2+mRNAx) within the non-coding part of it. B2+mRNAx is concentrated in mouse liver polysomes and absent from cytoplasm of Ehrlich carcinoma cells. The B2 sequence seems to be located at the 3'-end of some other mRNAs as well. To determine the orientation of the B2 sequence in different RNAs, its two strands were labeled, electrophoretically separated, and used for hybridization with Northern blotts containing nuclear, cytoplasmic and polysomal RNAs. In nuclear RNA, the B2 sequence is present in both orientations; in polysomal and cytoplasmic poly(A)+RNAs, only one ("canonical") strand of it can be detected. Low molecular weight poly(A)+B2+RNA [1] also contains the same strand of the B2 element. The conclusion has been drawn that only one its strand can survive the processing. This strand contains promoter-like sequences and AATAAA blocks. The latter can be used in some cases by the cell as mRNA polyadenylation signals.  相似文献   

4.
5.
6.
7.
L H Soe  C K Shieh  S C Baker  M F Chang    M M Lai 《Journal of virology》1987,61(12):3968-3976
A 28-kilodalton protein has been suggested to be the amino-terminal protein cleavage product of the putative coronavirus RNA polymerase (gene A) (M.R. Denison and S. Perlman, Virology 157:565-568, 1987). To elucidate the structure and mechanism of synthesis of this protein, the nucleotide sequence of the 5' 2.0 kilobases of the coronavirus mouse hepatitis virus strain JHM genome was determined. This sequence contains a single, long open reading frame and predicts a highly basic amino-terminal region. Cell-free translation of RNAs transcribed in vitro from DNAs containing gene A sequences in pT7 vectors yielded proteins initiated from the 5'-most optimal initiation codon at position 215 from the 5' end of the genome. The sequence preceding this initiation codon predicts the presence of a stable hairpin loop structure. The presence of an RNA secondary structure at the 5' end of the RNA genome is supported by the observation that gene A sequences were more efficiently translated in vitro when upstream noncoding sequences were removed. By comparing the translation products of virion genomic RNA and in vitro transcribed RNAs, we established that our clones encompassing the 5'-end mouse hepatitis virus genomic RNA encode the 28-kilodalton N-terminal cleavage product of the gene A protein. Possible cleavage sites for this protein are proposed.  相似文献   

8.
9.
10.
11.
12.
13.
Approximately 39% of the clones from a BALB/c mouse genomic library hybridized with polyadenylated cytoplasmic RNA extracted from anemic mouse spleen. The DNA sequence of a portion of one such clone revealed the presence of three repetitive sequence elements within a 700 bp span. All three elements contain putative RNA polymerase III control regions oriented in the same direction and oligo(dA) tracts at their 3' ends. The first element is a member of the murine B1 family. A comparison of this element with other B1 family members indicates that the B1 family can be divided into two subclasses based on commonly held base changes and deletions. The second element within this 700 bp region may be a member of a new murine Alu family. Its structure is analogous to other murine Alu-equivalent sequences with respect to overall length, the presence of a 3' oligo(dA) tract and putative RNA polymerase III control regions. The third element is a murine type 2 Alu-equivalent sequence.  相似文献   

14.
4.5 SI RNA is an abundant, noncapped, small nuclear RNA found in rodent cells. The 4.5 SI RNA is 98 or 99 nucleotides long and contains no modified nucleotides; it is synthesized by RNA polymerase III, is partly hydrogen-bonded to poly(A+) hnRNA, and was the first small nuclear RNA to be purified and sequenced (Busch, H., Reddy, R., Ruthblum, L., and Choi, Y. C. (1982) Annu. Rev. Biochem. 51, 617-654). In studies on the structure and organization of genes coding for this abundant RNA, it was found that this RNA is homologous to an apparently novel family of repetitive sequences. Two clones were characterized; one clone showed that its sequence is identical to the RNA in the first 92 residues and differed only in the last six nucleotides. In addition, the 3'-end of the sequence contained an A,T-rich region, and the sequence was flanked by a 15-nucleotide long direct repeat of AAAATATAGACACTG. The second clone characterized contained nucleotide sequences 1-57 corresponding to the RNA and was flanked by a 15-nucleotide long direct repeat. The structural features of these two DNAs are consistent with RNA-mediated DNA synthesis and integration of this DNA into the genome at random sites. It is estimated that there are about 10,000 copies of this family of sequences in the haploid rat genome.  相似文献   

15.
The DNA sequence corresponding to the 1.3 kb 3' untranslated region of the 6.5 kb human procollagen alpha 1(IV) mRNA was determined and compared with the mouse sequence obtained from 3' cDNA and genomic clones overlapping the reported 5' half (Oberbaumer et al., 1985, Eur. J. Biochem. 147:217). Although four AAUAAA hexanucleotides are found in the human and seven in the mouse RNAs, Northern blot hybridization showed almost exclusive utilization of the most 3' sequence, in contrast to the pattern seen when using alpha 1(I), alpha 2(I), alpha 1(III) and alpha 2(V) procollagen probes. Moreover, the ninety nucleotides 5' to the poly A tail in the major alpha 1(IV) mRNAs exhibit a much greater degree of interspecies homology than those encompassing the other three shared AAUAAA recognition signals. Further examination of this highly conserved area revealed the presence of two "consensus sequences" found in the 3' noncoding region of a number of RNA polymerase II transcribed genes (Mattaj and Zeller, 1983, Embo J. 2:1883) and, unexpectedly, some similarity with the nucleotides 5' to the poly A attachment signals in other procollagen mRNAs.  相似文献   

16.
Rat liver nuclei contain a 29-nucleotides-long RNA (fr 3-RNA) which is transcribed from middle repetitive DNA sequences. By Southern analysis of restriction fragments of rat albumin and alpha-fetoprotein genomic clones, DNA sequences complementary to this RNA were detected on a 4.6 kbp Eco RI fragment located 600 bp downstream from the termination exon of the albumin gene and on a 2 kbp Eco RI-HindIII fragment located 10 kbp downstream from the restriction fragment containing the alpha-fetoprotein site. No sequence complementary to this RNA was found either in the introns of exons of both genes or in the regions extending 7 kbp upstream from the first albumin exon and 10 kbp upstream of the first alpha-fetoprotein exon. We concluded that sequences complementary to fr 3-RNA are present at the 3'-end flanking regions of the rat albumin and alpha-fetoprotein gene complexes.  相似文献   

17.
The 42S RNA from Semliki Forest virus contains a polyadenylate [poly(A)] sequence that is 80 to 90 residues long and is the 3'-terminus of the virion RNA. A poly(A) sequence of the same length was found in the plus strand of the replicative forms (RFs) and replicative intermediates (RIs) isolated 2 h after infection. In addition, both RFs and RIs contained a polyuridylate [poly(U)] sequence. No poly(U) was found in virion RNA, and thus the poly(U) sequence is in minus-strand RNA. The poly(U) from RFs was on the average 60 residues long, whereas that isolated from the RIs was 80 residues long. Poly(U) sequences isolated from RFs and RIs by digestion with RNase T1 contained 5'-phosphorylated pUp and ppUp residues, indicating that the poly(U) sequence was the 5'-terminus of the minus-strand RNA. The poly(U) sequence in RFs or RIs was free to bind to poly(A)-Sepharose only after denaturation of the RNAs, indicating that the poly(U) was hydrogen bonded to the poly(A) at the 3'-terminus of the plus-strand RNA in these molecules. When treated with 0.02 mug of RNase A per ml, both RFs and RIs yielded the same distribution of the three cores, RFI, RFII, and RFIII. The minus-strand RNA of both RFI and RFIII contained a poly(U) sequence. That from RFII did not. It is known that RFI is the double-stranded form of the 42S plus-strand RNA and that RFIII is the experimetnally derived double-stranded form of 26S mRNA. The poly(A) sequences in each are most likely transcribed directly from the poly(U) at the 5'-end of the 42S minus-strand RNA. The 26S mRNA thus represents the nucleotide sequence in that one-third of the 42S plus-strand RNA that includes its 3'-terminus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号