首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k(cat)/K(M) higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k(cat)/K(M) of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.  相似文献   

2.
Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich’s ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this position, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity required a completely functional Nfs1 and correlated with the presence of efficient scaffold function. A screen of random Isu1 mutations for frataxin-bypass activity identified only M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persulfide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in the absence of frataxin. Direct targeting of the entire E. coli IscU to ∆yfh1 mitochondria also ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substitution i.e. IscU with Ile to Met change led to worsening of the ∆yfh1 phenotypes, including severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/prokaryotic IscU database entries sorted on the amino acid utilized at the M141 position identified unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and ancient feature of the prokaryotic Fe-S cluster assembly machinery.  相似文献   

3.
Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu. In the present paper, we report that a single amino acid substitution (methionine to isoleucine) at position 107 in the mature form of Isu1 restored many deficient functions in Δyfh1 or frataxin-depleted yeast cells. Iron homoeostasis was improved such that soluble/usable mitochondrial iron was increased and accumulation of insoluble/non-usable iron within mitochondria was largely prevented. Cytochromes were returned to normal and haem synthesis was restored. In mitochondria carrying the mutant Isu1 and no frataxin, Fe-S cluster enzyme activities were improved. The efficiency of new Fe-S cluster synthesis in isolated mitochondria was markedly increased compared with frataxin-negative cells, although the response to added iron was minimal. The M107I substitution in the highly conserved Isu scaffold protein is typically found in bacterial orthologues, suggesting that a unique feature of the bacterial Fe-S cluster machinery may be involved. The mechanism by which the mutant Isu bypasses the absence of frataxin remains to be determined, but could be related to direct effects on Fe-S cluster assembly and/or indirect effects on mitochondrial iron availability.  相似文献   

4.
Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.  相似文献   

5.
In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.  相似文献   

6.
Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.  相似文献   

7.
8.
The neurodegenerative disorder FRDA (Friedreich's ataxia) results from a deficiency in frataxin, a putative iron chaperone, and is due to the presence of a high number of GAA repeats in the coding regions of both alleles of the frataxin gene, which impair protein expression. However, some FRDA patients are heterozygous for this triplet expansion and contain a deleterious point mutation on the other allele. In the present study, we investigated whether two particular FRDA-associated frataxin mutants, I154F and W155R, result in unfolded protein as a consequence of a severe structural modification. A detailed comparison of the conformational properties of the wild-type and mutant proteins combining biophysical and biochemical methodologies was undertaken. We show that the FRDA mutants retain the native fold under physiological conditions, but are differentially destabilized as reflected both by their reduced thermodynamic stability and a higher tendency towards proteolytic digestion. The I154F mutant has the strongest effect on fold stability as expected from the fact that the mutated residue contributes to the hydrophobic core formation. Functionally, the iron-binding properties of the mutant frataxins are found to be partly impaired. The apparently paradoxical situation of having clinically aggressive frataxin variants which are folded and are only significantly less stable than the wild-type form in a given adverse physiological stress condition is discussed and contextualized in terms of a mechanism determining the pathology of FRDA heterozygous.  相似文献   

9.
For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the “buried” substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.  相似文献   

10.
The specialized yeast mitochondrial chaperone system, composed of the Hsp70 Ssq1p, its co-chaperone J-protein Jac1p, and the nucleotide release factor Mge1p, perform a critical function in the biogenesis of iron-sulfur (Fe/S) proteins. Using a spectroscopic assay, we have analyzed the potential role of the chaperones in Fe/S cluster assembly on the scaffold protein Isu1p in vitro in the presence of the cysteine desulfurase Nfs1p. In the absence of chaperones, the kinetics of Fe/S cluster formation on Isu1p were compatible with a chemical reconstitution pathway with Nfs1p functioning as a sulfide donor. Addition of Ssq1p improved the rates of Fe/S cluster assembly 3-fold. However, this stimulatory effect of Ssq1p required neither ATP nor Jac1p and could be fully attributed to the activation of the Nfs1p desulfurase activity by Ssq1p. Furthermore, chaperone-stimulated Fe/S cluster assembly did not involve the specific interaction between Isu1p and Ssq1p, since the effect was observed with Isu1p mutant proteins defective in this interaction, suggesting that nonspecific binding of Ssq1p to Nfs1p helped to prevent its unfolding. Consistent with this idea, these Isu1p mutants were capable of binding an Fe/S cluster in vivo but failed to restore the growth and Fe/S cluster assembly defects of a Isu1p/Isu2p-deficient yeast strain. Taken together, these data suggest that Ssq1p/Jac1p/Mge1p are not important for Fe/S cluster synthesis on Isu1p. Hence, consistent with previous in vivo data, these chaperones likely function in steps subsequent to the de novo synthesis of the Fe/S cluster on Isu1p.  相似文献   

11.
12.
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.  相似文献   

13.
Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis.  相似文献   

14.
Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich's ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule.  相似文献   

15.
Isu, the scaffold for assembly of Fe-S clusters in the yeast mitochondrial matrix, is a substrate protein for the Hsp70 Ssq1 and the J-protein Jac1 in vitro. As expected for an Hsp70-substrate interaction, the formation of a stable complex between Isu and Ssq1 requires Jac1 in the presence of ATP. Here we report that a conserved tripeptide, PVK, of Isu is critical for interaction with Ssq1 because amino acid substitutions in this tripeptide inhibit both the formation of the Isu-Ssq1 complex and the ability of Isu to stimulate the ATPase activity of Ssq1. These biochemical defects correlate well with the growth defects of cells expressing mutant Isu proteins. We conclude that the Ssq1-Isu substrate interaction is critical for Fe-S cluster biogenesis in vivo. The ability of Jac1 and mutant Isu proteins to cooperatively stimulate the ATPase activity of Ssq1 was also measured. Increasing the concentration of Jac1 and mutant Isu together but not individually partially overcame the effect of the reduced affinity of the Isu mutant proteins for Ssq1. These results, along with the observation that overexpression of Jac1 was able to suppress the growth defect of an ISU mutant, support the hypothesis that Isu is "targeted" to Ssq1 by Jac1, with a preformed Jac1-Isu complex interacting with Ssq1.  相似文献   

16.
Jac1p is a conserved, specialized J-protein that functions with Hsp70 in Fe-S cluster biogenesis in mitochondria of the yeast Saccharomyces cerevisiae. Although Jac1p as well as its specialized Hsp70 partner, Ssq1p, binds directly to the Fe-S cluster scaffold protein Isu, the Jac1p-Isu1p interaction is not well understood. Here we report that a C-terminal fragment of Jac1p lacking its J-domain is sufficient for interaction with Isu1p, and amino acid alterations in this domain affect interaction with Isu1p but not Ssq1p. In vivo, such JAC1 mutations had no obvious phenotypic effect. However, when present in combination with a mutation in SSQ1 that causes an alteration in the substrate binding cleft, growth was significantly compromised. Wild type Jac1p and Isu1p cooperatively stimulate the ATPase activity of Ssq1p. Jac1p mutant protein is only slightly compromised in this regard. Our in vivo and in vitro results indicate that independent interaction of Jac1p and the Isu client protein with Hsp70 is sufficient for robust growth under standard laboratory conditions. However, our results also support the idea that Isu protein can be "targeted" to Ssq1p after forming a complex with Jac1p. We propose that Isu protein targeting may be particularly important when environmental conditions place high demands on Fe-S cluster biogenesis or in organisms lacking specialized Hsp70s for Fe-S cluster biogenesis.  相似文献   

17.
18.
Defects in the yeast cysteine desulfurase Nfs1 cause a severe impairment in the 2-thio modification of uridine of mitochondrial tRNAs (mt-tRNAs) and cytosolic tRNAs (cy-tRNAs). Nfs1 can also provide the sulfur atoms of the iron-sulfur (Fe/S) clusters generated by the mitochondrial and cytosolic Fe/S cluster assembly machineries, termed ISC and CIA, respectively. Therefore, a key question remains as to whether the biosynthesis of Fe/S clusters is a prerequisite for the 2-thio modification of the tRNAs in both of the subcellular compartments of yeast cells. To elucidate this question, we asked whether mitochondrial ISC and/or cytosolic CIA components besides Nfs1 were involved in the 2-thio modification of these tRNAs. We demonstrate here that the three CIA components, Cfd1, Nbp35, and Cia1, are required for the 2-thio modification of cy-tRNAs but not of mt-tRNAs. Interestingly, the mitochondrial scaffold proteins Isu1 and Isu2 are required for the 2-thio modification of the cy-tRNAs but not of the mt-tRNAs, while mitochondrial Nfs1 is required for both 2-thio modifications. These results clearly indicate that the 2-thio modification of cy-tRNAs is Fe/S protein dependent and thus requires both CIA and ISC machineries but that of mt-tRNAs is Fe/S cluster independent and does not require key mitochondrial ISC components except for Nfs1.  相似文献   

19.
Previous studies have indicated that the essential protein Nfs1 performs a crucial role in cellular iron-sulfur (Fe/S) protein maturation. The protein is located predominantly in mitochondria, yet low amounts are present in cytosol and nucleus. Here we examined several aspects concerning the molecular function of yeast Nfs1p as a model protein. First, we demonstrated that purified Nfs1p facilitates the in vitro assembly of Fe/S proteins by using cysteine as its specific substrate. Thus, eukaryotic Nfs1 is a functional orthologue of the bacterial cysteine desulfurase IscS. Second, we showed that only the mitochondrial version but not the extramitochondrial version of Nfs1p is functional in generating cytosolic and nuclear Fe/S proteins. Mutation of the nuclear targeting signal of Nfs1p did not affect the maturation of cytosolic and nuclear Fe/S proteins, despite a severe growth defect under this condition. Nfs1p could not assemble an Fe/S cluster on the Isu scaffold proteins when they were located in the yeast cytosol. The lack of function of these central Fe/S cluster assembly components suggests that the maturation of extramitochondrial Fe/S protein does not involve functional copies of the mitochondrial Fe/S cluster assembly machinery in the yeast cytosol. Third, the extramitochondrial version of Nfs1p was shown to play a direct role in the thiomodification of tRNAs. Finally, we identified a highly conserved N-terminal beta-sheet of Nfs1p as a functionally essential part of the protein. The implication of these findings for the structural stability of Nfs1p and for its targeting mechanism to mitochondria and cytosol/nucleus will be discussed.  相似文献   

20.
The mitochondrial proteins Isu1p and Isu2p play an essential role in the maturation of cellular iron-sulfur (Fe/S) proteins in eukaryotes. By radiolabelling of yeast cells with 55Fe we demonstrate that Isu1p binds an oxygen-resistant non-chelatable Fe/S cluster providing in vivo evidence for a scaffolding function of Isu1p during Fe/S cluster assembly. Depletion of the cysteine desulfurase Nfs1p, the ferredoxin Yah1p or the yeast frataxin homologue Yfh1p by regulated gene expression causes a strong decrease in the de novo synthesis of Fe/S clusters on Isu1p. In contrast, depletion of the Hsp70 chaperone Ssq1p, its co-chaperone Jac1p or the glutaredoxin Grx5p markedly increased the amount of Fe/S clusters bound to Isu1p, even though these mitochondrial proteins are crucial for maturation of Fe/S proteins. Hence Ssq1p/Jac1p and Grx5p are required in a step after Fe/S cluster synthesis on Isu1p, for instance in dissociation of preassembled Fe/S clusters from Isu1p and/or their insertion into apoproteins. We propose a model that dissects Fe/S cluster biogenesis into two major steps and assigns its central components to one of these two steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号