首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine–magnesium aluminum silicate (NCT–MAS) complexes acting as drug carriers were prepared using the direct compression method. The effects of the preparation pH levels of the NCT–MAS complexes and the complex/SA ratios on NCT release, permeation across mucosa, and mucoadhesive properties of the tablets were investigated. The NCT–MAS complex-loaded SA tablets had good physical properties and zero-order release kinetics of NCT, which indicate a swelling/erosion-controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that NCT delivery was controlled by the swollen gel matrix of the tablets. This matrix, which controlled drug diffusion, resulted from the molecular interactions of SA and MAS. Tablets containing the NCT–MAS complexes prepared at pH 9 showed remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. Larger amounts of SA in the tablets decreased NCT release and permeation rates. Additionally, the presence of SA could enhance the mucoadhesive properties of the tablets. These findings suggest that SA plays the important role not only in controlling release and permeation of NCT but also for enhancing the mucoadhesive properties of the NCT–MAS complex-loaded SA tablets, and these tablets demonstrate a promising buccal delivery system for NCT.  相似文献   

2.
The aims of this study were to characterize the morphology and size of flocculates and the zeta potential and rheological properties of polymer–magnesium aluminum silicate (MAS) composite dispersions and to investigate the physical properties of acetaminophen (ACT) suspensions prepared using the composite dispersions as a flocculating/suspending agent. The polymers used were sodium alginate (SA), sodium carboxymethylcellulose (SCMC), and methylcellulose (MC). The results showed that SA, SCMC, and MC could induce flocculation of MAS by a polymer-bridging mechanism, leading to the changes in the zeta potential of MAS and the flow properties of the polymer dispersions. The microscopic morphology and size of the flocculates was dependent on the molecular structure of the polymer, especially ether groups on the polymer side chain. The residual MAS from the flocculation could create a three-dimensional structure in the SA–MAS and SCMC–MAS dispersions, which brought about not only an enhancement of viscosity and thixotropic properties but also an improvement in the ACT flocculating efficiency of polymers. The use of polymer–MAS dispersions provided a higher degree of flocculation and a lower redispersibility value of ACT suspensions compared with the pure polymer dispersions. This led to a low tendency for caking of the suspensions. The SCMC–MAS dispersions provided the highest ACT flocculating efficiency, whereas the lowest ACT flocculating efficiency was found in the MC–MAS dispersions. Moreover, the added MAS did not affect ACT dissolution from the suspensions in an acidic medium. These findings suggest that the polymer–MAS dispersions show good potential for use as a flocculating/suspending agent for improving the rheological properties and physical stability of the suspensions.  相似文献   

3.
《Acta Oecologica》2004,25(1-2):111-117
I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137–305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator–prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator–prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.  相似文献   

4.
The solubility of weakly basic drugs within passage though GI tract leads to pH-dependent or even incomplete release of these drugs from extended release formulations and consequently to lower drug absorption and bioavailability. The aim of the study was to prepare and evaluate hydrophilic–lipophilic (hypromellose–montanglycol wax) matrix tablets ensuring the pH-independent delivery of the weakly basic drug verapamil-hydrochloride by an incorporation of three organic acidifiers (citric, fumaric, and itaconic acids) differing in their concentrations, pKa, and solubility. The dissolution studies were performed by the method of changing pH values, which better corresponded to the real conditions in the GI tract (2 h at pH 1.2 and then 10 h at pH 6.8). Within the same conditions, pH of matrix microenvironment was measured. To determine relationships between the above mentioned properties of acidifiers and the monitored effects (the amount of released drug and surface pH of gel layer in selected time intervals—360 and 480 min), the full factorial design method and partial least squares PLS-2 regression were used. The incorporation of the tested pH modifiers significantly increased the drug release rate from matrices. PLS-components explained 75% and 73% variation in the X- and Y-data, respectively. The obtained results indicated that the main crucial points (p < 0.01) were the concentration and strength of acidifier incorporated into the matrix. Contrary, the acid solubility surprisingly did not influence the selected effects except for the surface pH of gel layer in time 480 min.Key words: gel layer, matrix tablets, pH-independent drug release, pH modifiers, statistical evaluation  相似文献   

5.
The biological function of ??-lactalbumin (??-LA) depends on its conformation. ??-LA can adopt a stable intermediate state induced by heating or pH change. This intermediate state associates with oleic acid (OA) to form an anti-tumor complex. The effect of temperature on the formation the complex has been studied, whereas the effect of pH on complex formation remains unresolved. The effect of pH on tryptophan residues, hydrophobic clusters and secondary structure of Ca2+-depleted bovine ??-LA (BLA) was studied by fluorescence spectroscopy and circular dichroism. BLA was found to adopt a more flexible conformation between pH 7.0 and 9.0 with buried hydrophobic clusters. The binding ability of ??-LA towards OA and the anti-tumor activity of the corresponding complex were also studied. BLA was found to bind more OA over the pH range of 7.0?C9.0 and the corresponding complexes showed a higher anti-tumor activity than those complexes formed under acidic conditions. Our study indicates that alkaline pH aided the formation of the complex as well as its anti-tumor activity. We also propose a possible characteristic structure that facilitates binding of OA.  相似文献   

6.
Modulation of L-type Ca(2+) current (I(Ca,L)) by H(+) ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of I(Ca,L) was investigated (whole cell voltage clamp) while measuring intracellular Ca(2+) (Ca(2+)(i)) or pH(i) (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pH(o) 6.5 and pH(i) 6.7) had opposite effects on I(Ca,L) gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pH(o), this decreased I(Ca,L), whereas at low pH(i), it increased I(Ca,L) at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca(2+)(i) was buffered with BAPTA, the stimulatory effect of low pH(i) was even more marked, with essentially no inhibition. We conclude that extracellular H(+) ions inhibit whereas intracellular H(+) ions can stimulate I(Ca,L). Low pH(i) and pH(o) effects on I(Ca,L) were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H(+) ion screening of fixed negative charge at the sarcolemma, with additional channel block by H(+)(o) and Ca(2+)(i). Action potential duration (APD) was also strongly H(+) sensitive, being shortened by low pH(o), but lengthened by low pH(i), caused mainly by H(+)-induced changes in late Ca(2+) entry through the L-type Ca(2+) channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca(2+) signaling. We conclude that the pH(i)-versus-pH(o) control of I(Ca,L) will exert a major influence on electrical and Ca(2+)-dependent signaling during acid-base disturbances in the heart.  相似文献   

7.
《Carbohydrate polymers》1987,7(4):291-300
The influence of pH, and of electrolytes, on the viscoelastic properties of potato and cassava starch gels was investigated, using a cone-and-plate rheometer run in the oscillatory mode. The gel strength of the potato starch gels had a maximum around pH 8·5, and was markedly lowered by the addition of even small amounts of electrolytes. This may be due to an electrostatic interaction between potato starch phosphate groups and added cations which blocks the normal phosphate-to-phosphate cross-linking. Neither pH nor electrolytes affected the viscoelastic properties of cassava starch gels. The gelatinization temperature and the gelatinization enthalpy of potato starch, as measured by differential scanning calorimetry, were insensitive to pH and to low electrolyte concentrations.  相似文献   

8.
College students usually exhibit an irregular sleep-wake cycle characterized by great phase delays on weekends and short sleep length on weekdays. As the temporal organization of social activities is an important synchronizer of human biological rhythms, we investigated the role played by study's schedules and work on the sleep-wake cycle. Three groups of female college students were investigated: (1) no-job morning group, (2) no-job evening group, (3) job evening group. The volunteers answered a sleep questionnaire in the classroom. The effects of day of the week and group on the sleep schedules and sleep length were analyzed by a two way ANOVA for repeated measures. The three groups showed delays in the wake up time on weekends. No-job evening and morning groups also delayed bedtime, but the job evening group slept at the same time on weekdays as on weekends. Sleep length increased on weekends for morning group and job evening group, whereas the no-job evening group maintained the amount of sleep from weekdays to weekends. This survey showed that the tendency of phase delay on weekends was differently expressed according to study's schedules and work.  相似文献   

9.
To investigate how the level of microbial activity in grassland soils affects plant–microbial competition for different nitrogen (N) forms, we established microcosms consisting of a natural soil community and a seedling of one of two co-existing grass species, Anthoxanthum odoratum or Festuca rubra. We then stimulated the soil microbial community with glucose in half of the microcosms and followed the transfer of added inorganic (15NH415NO3) and organic (glycine-2-13C-15N) N into microbial and plant biomass. We found that microbes captured significantly more 15N in organic than in inorganic form and that glucose addition increased microbial 15N capture from the inorganic source. Shoot and root biomass, total shoot N content and shoot and root 15N contents were significantly greater for A. odoratum than F. rubra, whereas F. rubra had higher shoot and root N concentrations. Where glucose was not added, A. odoratum had higher shoot 15N content with organic than with inorganic 15N addition, whereas where glucose was added, both species had higher shoot 15N content with inorganic than with organic 15N. Glucose addition had equally negative effects on shoot growth, total shoot N content, shoot and root N concentrations and shoot and root 15N content for both species. Both N forms produced significantly more shoot biomass and higher shoot N content than the water control, but the chemical form of N had no significant effect. Our findings suggest that plant species that are better in capturing nutrients from soil are not necessarily better in tolerating increasing microbial competition for nutrients. It also appears that intense microbial competition has more adverse effects on the uptake of organic than inorganic N by plants, which may potentially have significant implications for interspecific plant–plant competition for N in ecosystems where the importance of organic N is high and some of the plant species specialize in use of organic N.  相似文献   

10.
Organometallic complexes conjugated to cell-penetrating peptides (CPPs) are promising systems for diagnostic imaging and therapeutic applications in human medicine. Recently, we reported on the synthesis of cymantrene(CpMn(CO)3)–CPP conjugates with biological activity on different cancer cell lines. However, the precise mechanism of cytotoxicity remained elusive in these studies. To investigate the role of the metal center and the linker between the CpM(CO)3 moiety and the peptide, a number of derivatives with manganese replaced by rhenium and the keto linker originally used substituted by a methylene group were prepared and fully characterized by 1H NMR spectroscopy, infrared spectroscopy, electrospray ionization mass spectrometry, and elemental analysis as well as X-ray structure determination. The organometal–peptide conjugates as well as carboxyfluorescein-labeled derivatives thereof were prepared by solid-phase peptide synthesis, purified by high-performance liquid chromatography, and analyzed by mass spectrometry. Fluorescence microscopy studies of MCF-7 human breast cancer cells revealed an efficient cellular uptake and pronounced nuclear localization of the bioconjugates with the methylene linker compared with systems with the keto group. In addition, the latter also showed a higher cytotoxicity. In contrast, the variation of the metal center from manganese to rhenium had a negligible effect. The structure–activity relationships determined in the present work will aid in the further tuning of the biological activity of organometal–peptide conjugates.  相似文献   

11.
This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 106 cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation–aeration systems.  相似文献   

12.
A series of D–A-type copolymers was designed and studied systematically for the purpose of gaining a deeper understanding of how the D/A ratio may influence the geometric and electronic properties when it varies from 2:1 to 6:1 by using DFT method. The results show that it has a significant effect on the bond length alternation, band gap, bandwidth and effective mass of carriers of the designed D–A-type copolymers. But its influence on the geometric and electronic properties shows something very different in degree when it increases from 2:1 to 4:1 and then increases further from 4:1 to 6:1. It is found that the effects of increasing D/A ratio on geometric and electronic properties are much stronger when the D/A ratio increases from 2:1 to 4:1 than when it further increases from 4:1 to 6:1. The theoretical results show that the polymers with a D/A ratio of 2:1 have much smaller effective mass of carriers and much wider bandwidth compared to those polymers with the D/A ratio of 4:1 and 6:1. Therefore, the designed D–A-type copolymers with a D/A ratio of 2:1 may actually be the better candidates for intrinsic conduction materials.  相似文献   

13.
Ganglioside-induced apoptosis in the cells of IL-2–dependent cytotoxic murine cell line CTLL-2 was shown to be caspase dependent: GM1-, GM2-, and GD3-induced suppression of cell proliferation was cancelled by a general caspase inhibitor Z-VAD-FMK. Ganglioside-induced apoptosis pathways are different for different individual glycolipids; the differences exist both at the initiation and effector stages of the caspase cascade. Only for GM1-induced process, molecular mechanisms of signal transduction coincide with the ones for CD95 and TNF: the participation of both the main initiation caspases 8, 1, and 4, and caspases 3 and 9 as well, has been shown. Caspase 3 participates in the pathway induced by GM3, GD1a, GD1b, and GT1b, but not by GM2. As morphological features show, tumor-associated ganglioside GM2 is also a stimulus of programmed cell death (PCD) for CTLL-2 cell line: addition of GM2 into cell culture has resulted in appearance of annexin V-positive cells and in accumulation of DNA breaks (shown by the TUNEL direct dyeing of the open ends). But a caspase 3 inhibitor Z-DEVD-FMK did not restore the cell proliferation suppressed by GM2, and addition of a fluorescent substrate of caspase 3 Ac-DEVD-AFC did not result in the fluorescence development. So caspase 3 does not participate in downstream pathways of GM2-induced cell apoptosis, and a PCD-effector system other than the apoptosome-mediated one is involved here.  相似文献   

14.
15.
Light scattering from fibrin structures, obtained by exposure of fibrinogen to thrombin, Batroxobin (Reptilase) or coagulant fraction extracted from Contortrix venom at 20 and and 37°C, show in every case that rod-like intermediates are formed in the beginning of the aggregation process. The fibrils differ in the extent of branching and in lateral aggregation. Contortrix enzyme causes the highest branching density but the lowest lateral aggregation. Thrombin and Batroxobin give almost identical results. A change of temperature from 20 to 37°C yields an increase in branching density and lateral aggregation for the fibrin structures induced by the two snake venoms. With thrombin, however, the branching density decreases with the elevated temperature while the lateral aggregation strongly increases. Mostly opaque clots are obtained, with the exception of the clots induced by thrombin at 37°C, where a fine or traslucent gel is obtained. A very low extent of branching and translucent gels are also found with thrombin at 20°C and pH 7.3 but at pH 9.5 no correlation between a preferential cleavange of fibrinopeptide B and the lateral aggregation could be detected. The opacity is discussed as being the result of inhomogeneity in both branching and lateral aggregation. A quantitative analysis of the angular dependence of the scattered light indicates that non-activated human fibrinogen exists at least in the two conformations of a long rod, L = 95 ± 5 nm, and a short rod of 47.5 ± 5 nm, with mass fractions of ~ 70 and 30%, respectively. Only the long rod conformation of the monomer is built in the fibril. The model of a pure end-to-end aggregation is shown to be unlikely and the possibility of an overlapping of the monomeric rods over a region of ~ 8 nm is discussed.  相似文献   

16.
The objective of this work is to investigate the water and aroma barrier properties of films obtained from ι-carrageenan containing glycerol and lipids mixtures of oleic acid (OA) and beeswax (BW) used for encapsulation of active compounds. Water vapor permeability (WVP) is greatly influenced by lipid composition, encapsulated aroma compound and also relative humidity. WVP decreases when films contain encapsulated aroma compound but increases when the moisture content in the films increases. When oleic acid was the main compound of lipid phase, the plasticizing effect of water revealed through water permeability is less marked. The results of ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol and cis-3-hexenol permeabilities reveal that physicochemical interactions between aroma compounds-hydrocolloid and aroma compound-lipid induce structural changes and modify their permeability. This work gives evidence of the ability of ι-carrageenan–OA–BW films to protect encapsulated aroma compound and its influence in barrier properties.  相似文献   

17.
Electrospun blend nanofibers were fabricated from chitosan (1,000 kDa, 80% DDA) and poly(ethylene oxide) (PEO; 900 kDa) at a ratio of 3:1 dispersed in 50% and 90% acetic acid. The influence of surfactants on the production of electrospun nanofibers was investigated by adding nonionic polyoxyethylene glycol dodecyl ether (Brij 35), anionic sodium dodecyl sulfate, or cationic dodecyl trimethyl ammonium bromide below, at, and above their specific critical micellar concentration to the polymer blend solution. Viscosity, conductivity, and surface tension of polymer solutions, as well as morphology and composition, of nanofibers containing surfactants were determined. Pure chitosan did not form fibers and was instead deposited as beads. Addition of PEO and an increasing concentration of surfactants induced spinnability and yielded larger fibers with diameters ranging from 10 to 240 nm. Surfactants affected morphology yielding needle-like, smooth, or beaded fibers. Compositional analysis revealed that nanofibers consisted of both polymers and surfactants with concentration of the constituents in nanofibers differing from that in polymer solutions. Results suggest that surfactants may modulate polymer–polymer interactions thus influencing the morphology and composition of deposited nanostructures.  相似文献   

18.
This study was carried out to determine the effect of influent pH and alkalinity on the performance of sequential UASB and RBC reactors for the removal of 2-CP and 2,4-DCP from two different simulated wastewaters. The performance of methanogens at low (<6.0) to high (>8.0) pH values and at sufficiently high alkalinity (1500–3500 mg/l as CaCO3) is described in this paper. Sequential reactors were capable of handling wastewaters with influent pH, 5.5–8.5. However, with influent pH 7.0 ± 0.1 UASB reactor showed best performance for 2-CP (99%) and 2,4-DCP (88%) removals. Increase in alkalinity/COD ratio in the influent (>1.1) caused gradual decrease in the chlorophenol removal in UASB reactors. The UASB reactors could not tolerate wastewater with higher alkalinity/COD ratio (2.6) and showed significant deterioration of its performance in terms of chlorophenols removal achieving only 74.7% 2-CP and 60% 2,4-DCP removals, respectively.  相似文献   

19.
The performance of three selected bacterial strains—PR3, PR7 and PR10 (Providencia sp., Brevundimonas sp., Ochrobacterium sp.) and three cyanobacterial strains CR1, CR2 and CR3 (Anabaena sp., Calothrix sp., Anabaena sp.), and their combinations was evaluated in a pot experiment with rice variety Pusa-1460, comprising 51 treatments along with recommended fertilizer controls. Highest yield enhancement of 19.02% was recorded in T12 (CR2), over control, while significant enhancement in nitrogen fixing potential was recorded in treatments involving combination of bacterial-cyanobacterial strains—T37 (PR3 + CR1 + CR3) and T21 (PR7 + CR1). Organic carbon was significantly increased in all microbe-inoculated treatments, which could be correlated with microbial biomass carbon values and activities of all the enzymes tested in our study. Also, panicle weight and plant biomass were highly correlated with soil microbial carbon. Comparative evaluation revealed the superior performance of strains CR2, CR1 (both Anabaena sp.) and PR10 (Ochrobacterium sp.) in increasing the growth and grain yield of rice and improving soil health, besides N (nitrogen) savings of 40–80 kg ha−1. The study for the first time illustrated the positive effects of co-inoculation of bacterial and cyanobacterial strains for integrated nutrient management of rice crop.  相似文献   

20.
Day–night cycle is the main zeitgeber (time giver) for biological circadian rhythms. Recently, it was suggested that natural diurnal geomagnetic variation may also be utilized by organisms for the synchronization of these rhythms. In this study, life-history traits in Daphnia magna were evaluated after short-term and multigenerational exposure to 16 h day/8 h night cycle, 32 h day/16 h night cycle, diurnal geomagnetic variation of 24 h, simulated magnetic variation of 48 h, and combinations of these conditions. With short-term exposure, the lighting mode substantially influenced the brood to brood period and the lifespan in daphnids. The brood to brood period, brood size, and body length of crustaceans similarly depended on the lighting mode during the multigenerational exposure. At the same time, an interaction of lighting mode and magnetic variations affected to a lesser extent brood to brood period, brood size, and newborn's body length. The influence of simulated diurnal variation on life-history traits in daphnids appeared distinctly as effects of synchronization between periods of lighting mode and magnetic variations during the multigenerational exposure. Newborn's body length significantly depended on the lighting regime when the periods of both studied zeitgebers were unsynchronized, or on the interaction of light regime with magnetic variations when the periods were synchronized. These results confirm the hypothesis that diurnal geomagnetic variation is an additional zeitgeber for biological circadian rhythms. Possible mechanisms for these observed effects are discussed. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号