共查询到20条相似文献,搜索用时 0 毫秒
1.
苹果蠹蛾Cydia pomonella(L.)是我国重大植物检疫性有害生物,对苹果属以及梨属的水果生产造成严重的危害。该虫以初孵化的1龄幼虫蛀入果肉,在果实内部取食为害并完成发育,老熟幼虫在黑暗中离开果实并寻找场所结茧化蛹。为掌握苹果蠹蛾幼虫进入及脱出果实时的行为特性,从而为实施有效的防治措施提供基础信息,本文在内蒙古格棱布楞滩对苹果蠹蛾幼虫的蛀果与脱果特性开展了详细研究。取得的主要研究结果如下:1)在苹果蠹蛾种群密度较高的情况下,单个果实平均蛀孔数可达5.25个,初期蛀入果实的幼虫在2~8头之间;2)苹果及梨蛀果中的幼虫数量与蛀孔数无关,虽然果实上的最高蛀孔数可达14个,但一般情况下受害果实中的幼虫数不超过3个;3)当果实表面蛀孔数较多时(苹果超过5个,梨超过2个),苹果蠹蛾幼虫向种室钻蛀的行为发生偏移,通常转入在果肉中为害;4)落果后5d内,落果内的幼虫近半数脱果(43.1%),落果后15d内,落果内的幼虫几乎全部脱果(99.9%);5)在脱果幼虫中,94%选择在夜间脱果,6%在日间脱果;6)至试验结束,蛀果中还有64%的幼虫滞留。以上研究结果表明,在种群密度较高的情况下,苹果蠹蛾幼虫存在激烈的种内竞争;及时清除苹果蠹蛾幼虫蛀果后造成的落果对未脱果幼虫有很好的防治效果。 相似文献
2.
3.
Beatrice Severino Giuseppina Maria Incisivo Ferdinando Fiorino Antonio Bertolino Francesco Frecentese Francesco Barbato Serena Manganelli Giada Maggioni Domenica Capasso Giuseppe Caliendo Vincenzo Santagada Raffaella Sorrentino Fiorentina Roviezzo Elisa Perissutti 《Journal of peptide science》2013,19(11):717-724
Sphingosine‐1‐phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein‐coupled receptors, named S1P1–5. Among them, S1P3 has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX‐725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P3. Here, aiming to identify novel S1P3 antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C‐ and N‐terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala‐scan derived compounds (2–10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose‐dependent manner, both pepducin 1‐induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
4.
5.
B lymphocyte egress from secondary lymphoid organs requires sphingosine-1-phosphate (S1P) and S1P receptor-1 (S1P1). However, whether S1P contributes to immature-B cell egress from the bone marrow (BM) has not been fully assessed. Here we report that in S1P- and S1P1-conditionally deficient mice, the number of immature-B cells in the BM parenchyma increased, while it decreased in the blood. Moreover, a slower rate of bromodeoxyuridine incorporation suggested immature-B cells spent longer in the BM of mice in which S1P1-S1P signaling was genetically or pharmacologically impaired. Transgenic expression of S1P1 in developing B cells was sufficient to mobilize pro- and pre-B cells from the BM. We conclude that the S1P1-S1P pathway contributes to egress of immature-B cells from BM, and that this mechanism is partially redundant with other undefined pathways. 相似文献
6.
Hydrogen peroxide (H2O2) is an incompletely reduced metabolite of oxygen that has a diverse array of physiological and pathological effects within
living cells depending on the extent, timing, and location of its production. Characterization of the cellular functions of
H2O2 requires measurement of its concentration selectively in the presence of other oxygen metabolites and with spatial and temporal
fidelity in live cells. For the measurement of H2O2 in biological fluids, several sensitive methods based on horseradish peroxidase and artificial substrates (such as Amplex
Red and 3,5,3’5’-tetramethylbenzidine) or on ferrous oxidation in the presence of xylenol orange (FOX) have been developed.
For measurement of intracellular H2O2, methods based on dihydro compounds such as 2’,7’-dichlorodihydrofluorescein that fluoresce on oxidation are used widely
because of their sensitivity and simplicity. However, such probes react with a variety of cellular oxidants including nitric
oxide, peroxynitrite, and hypochloride in addition to H2O2. Deprotection reaction-based probes (PG1 and PC1) that fluoresce on H2O2-specific removal of a boronate group rather than on nonspecific oxidation have recently been developed for selective measurement
of H2O2 in cells. Furthermore, a new class of organelle-targetable fluorescent probes has been devised by joining PG1 to a substrate
of SNAP-tag. Given that SNAP-tag can be genetically targeted to various subcellular organelles, localized accumulation of
H2O2 can be monitored with the use of SNAP-tag bioconjugation chemistry. However, given that both dihydro- and deprotection-based
probes react irreversibly with H2O2, they cannot be used to monitor transient changes in H2O2 concentration. This drawback has been overcome with the development of redox-sensitive green fluorescent protein (roGFP)
probes, which are prepared by the introduction of two redox-sensitive cysteine residues into green fluorescent protein; the
oxidation of these residues to form a disulfide results in a conformational change of the protein and altered fluorogenic
properties. Such genetically encoded probes react reversibly with H2O2 and can be targeted to various compartments of the cell, but they are not selective for H2O2 because disulfide formation in roGFP is promoted by various cellular oxidants. A new type of H2O2-selective, genetically encoded, and reversible fluorescent probe, named HyPer, was recently prepared by insertion of a circularly
permuted yellow fluorescent protein (cpYFP) into the bacterial peroxide sensor protein OxyR. 相似文献
7.
8.
Rat-1 cells exposed to Vibrio parahaemolyticus thermostable direct hemolysin (TDH) developed morphological changes including shrinkage of the cells and reduction in the size of nuclei. Cells either microinjected with TDH or transfected with the tdh gene also showed morphological changes similar to those induced by externally added toxin. Furthermore, TDH-exposed or tdh-transfected cells both showed chromatin condensation and DNA fragmentation which suggest cells undergoing apoptosis. In contrast, expression of a TDH mutant (R7) did not reveal any cytotoxic effects. We demonstrate that expressed TDH was distributed in the cytoplasm. The interleukin-1beta-converting enzyme-related protease inhibitor ZVAD-FMK did not inhibit TDH cytotoxicity. Our results suggest that TDH can induce its cytotoxicity both from outside and from inside the cells and killed the cells through apoptosis. 相似文献
9.
Maeda Y Matsuyuki H Shimano K Kataoka H Sugahara K Chiba K 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(6):3437-3446
Dendritic cells (DCs) and lymphocytes are known to show a migratory response to the phospholipid mediator, sphingosine 1-phosphate (S1P). However, it is unclear whether the same S1P receptor subtype mediates the migration of lymphocytes and DCs toward S1P. In this study, we investigated the involvement of S1P receptor subtypes in S1P-induced migration of CD4 T cells and bone marrow-derived DCs in mice. A potent S1P receptor agonist, the (S)-enantiomer of FTY720-phosphate [(S)-FTY720-P], at 0.1 nM or higher and a selective S1P receptor type 1 (S1P(1)) agonist, SEW2871, at 0.1 muM or higher induced a dose-dependent down-regulation of S1P(1). The pretreatment with these compounds resulted in a significant inhibition of mouse CD4 T cell migration toward S1P. Thus, it is revealed that CD4 T cell migration toward S1P is highly dependent on S1P(1). Mature DCs, when compared with CD4 T cells or immature DCs, expressed a relatively higher level of S1P(3) mRNA. S1P at 10-1000 nM induced a marked migration and significantly enhanced the endocytosis of FITC-dextran in mature but not immature DCs. Pretreatment with (S)-FTY720-P at 0.1 microM or higher resulted in a significant inhibition of S1P-induced migration and endocytosis in mature DCs, whereas SEW2871 up to 100 microM did not show any clear effect. Moreover, we found that S1P-induced migration and endocytosis were at an extremely low level in mature DCs prepared from S1P(3)-knockout mice. These results indicate that S1P regulates migration and endocytosis of murine mature DCs via S1P(3) but not S1P(1). 相似文献
10.
Hiraga Y Kihara A Sano T Igarashi Y 《Biochemical and biophysical research communications》2006,344(3):852-858
Sphingosine 1-phosphate (S1P) is a ligand for S1P family receptors (S1P(1)-S1P(5)). Of these receptors, S1P(1), S1P(2), and S1P(3) are ubiquitously expressed in adult mice, while S1P(4) and S1P(5) are tissue specific. However, little is known of their expression during embryonal development. We performed Northern blot analyses in mouse embryonal tissue and found that such expression is developmentally regulated. We also examined the expression of these receptors during primitive endoderm (PrE) differentiation of mouse F9 embryonal carcinoma (EC) cells, a well-known in vitro endoderm differentiation system. S1P(2) mRNA was abundantly expressed in F9 EC cells, but little S1P(1) and no S1P(3), S1P(4), or S1P(5) mRNA was detectable. However, S1P(1) mRNA expression was induced during EC-to-PrE differentiation. Studies using small interference RNA of S1P(1) indicated that increased S1P(1) expression is required for PrE differentiation. Thus, S1P(1) may play an important function in PrE differentiation that is not substituted for by S1P(2). 相似文献
11.
12.
Decapping is a central step in eukaryotic mRNA turnover. Recent studies have identified several factors involved in catalysis and regulation of decapping. These include the following: an mRNA decapping complex containing the proteins Dcp1 and Dcp2; a nucleolar decapping enzyme, X29, involved in the degradation of U8 snoRNA and perhaps of other capped nuclear RNAs; and a decapping 'scavenger' enzyme, DcpS, that hydrolyzes the cap structure resulting from complete 3'-to-5' degradation of mRNAs by the exosome. Several proteins that stimulate mRNA decapping by the Dcp1:Dcp2 complex co-localize with Dcp1 and Dcp2, together with Xrn1, a 5'-to-3' exonuclease, to structures in the cytoplasm called processing bodies. Recent evidence suggests that the processing bodies may constitute specialized cellular compartments of mRNA turnover, which suggests that mRNA and protein localization may be integral to mRNA decay. 相似文献
13.
Endoplasmic-reticulum-associated protein degradation inside and outside of the endoplasmic reticulum
Summary Newly synthesized polypeptides that enter the endomembrane system encounter a folding environment in the lumen of the endoplasmic reticulum (ER) constituted by enzymes, lectinlike proteins, and molecular chaperones. The folding process is under scrutiny of this abundant catalytic machinery, and failure of the new arrivals to assume a stable and functional conformation is met with targeting to proteolytic destruction, a process which has been termed ER-associated degradation (ERAD). In recent years it became clear that, in most cases, proteolysis appears to take place in the cytosol after retro-translocation of the substrate proteins from the ER, and to depend on the ubiquitin-proteasome pathway. On the other hand, proteolytic activities within the ER that have been widely neglected so far may also contribute to the turnover of proteins delivered to ERAD. Thus, ERAD is being deciphered as a complex process that requires communication-dependent regulated proteolytic activities within both the ER lumen and the cytosol. Here we discuss some recent findings on ERAD and their implications on possible mechanisms involved.Abbreviations lAT
alpha-1-antitrypsin
- apoB
apolipoprotein B
- BiP
immunoglobulin-heavy-chain-binding protein
- CFTR
cystic fibrosis transmembrane conductance regulator
- CPY
carboxypeptidase Y
- ER
endoplasmic reticulum
- ERAD ER
associated degradation
- HMG-CoA
3-hydroxy-3-methylglutaryl coenzyme A
- MHC
major histocompatibility complex
- PDI
protein disulflde isomerase
- TCR
T cell antigen receptor 相似文献
14.
Berdyshev EV Gorshkova I Usatyuk P Kalari S Zhao Y Pyne NJ Pyne S Sabbadini RA Garcia JG Natarajan V 《PloS one》2011,6(1):e16571
Background
Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P1 receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility.Methodology/Principal Findings
Inhibition of SphK activity with a SphK inhibitor 2-(p-Hydroxyanilino)-4-(p-Chlorophenyl) Thiazole or down-regulation of Sphk1, but not SphK2, with siRNA decreased S1Pint, and attenuated S1Pext or serum-induced motility of HPAECs. On the contrary, inhibition of S1PL with 4-deoxypyridoxine or knockdown of S1PL with siRNA increased S1Pint and potentiated motility of HPAECs to S1Pext or serum. S1Pext mediates cell motility through activation of Rac1 and IQGAP1 signal transduction in HPAECs. Silencing of SphK1 by siRNA attenuated Rac1 and IQGAP1 translocation to the cell periphery; however, knockdown of S1PL with siRNA or 4-deoxypyridoxine augmented activated Rac1 and stimulated Rac1 and IQGAP1 translocation to cell periphery. The increased cell motility mediated by down-regulation was S1PL was pertussis toxin sensitive suggesting “inside-out” signaling of intracellularly generated S1P. Although S1P did not accumulate significantly in media under basal or S1PL knockdown conditions, addition of sodium vanadate increased S1P levels in the medium and inside the cells most likely by blocking phosphatases including lipid phosphate phosphatases (LPPs). Furthermore, addition of anti-S1P mAb to the incubation medium blocked S1Pext or 4-deoxypyridoxine-dependent endothelial cell motility.Conclusions/Significance
These results suggest S1Pext mediated endothelial cell motility is dependent on intracellular S1P production, which is regulated, in part, by SphK1 and S1PL. 相似文献15.
The EcoRV restriction endonuclease cleaves DNA not only at its recognition sequence but also at most other sequences that differ from the recognition site by one base pair. Compared to the reaction at the recognition site, the reactions at noncognate sites are slow but 1 out of the 12 noncognate sites on the plasmid pAT153 is cleaved more than 50 times faster than any other. The increase in the reaction rate at the preferred noncognate site, relative to other sites, was caused by the DNA sequences in the 4 base pairs from either side of the site. For enhanced activity by EcoRV, particular bases were needed immediately adjacent to the site, inside the DNA-protein complex. At these loci, the protein interacts with the phosphate groups in the DNA and the flanking sequence may control the activity of the enzyme by determining the conformation of the DNA, thus aligning the phosphate contacts. But the preferential cleavage also depended on sequences further away from the site, at loci outside the complex. At external positions, beyond the reach of the protein, the EcoRV enzyme required flanking sequences that give rise to flexibility in DNA conformation. These may facilitate the distortion of the DNA required for catalysis by EcoRV. 相似文献
16.
17.
Senescence-associated degradation of chloroplast proteins inside and outside the organelle 总被引:1,自引:1,他引:0
Leaf proteins, and in particular the photosynthetic proteins of plastids, are extensively degraded during senescence. Although this involves massive amounts of protein, the mechanisms responsible for chloroplast protein degradation are largely unknown. Degradation within the plastid itself is supported by the observation that chloroplasts contain active proteases, and that chloroplasts isolated from senescing leaves can cleave Rubisco to release partially digested fragments. It is less clear whether chloroplasts can complete Rubisco degradation. Chloroplastic proteases are likely involved in the breakdown of the D1 and LHCII proteins of photosystem II. Small s enescence- a ssociated v acuoles (SAVs) with high-proteolytic activity develop in senescing leaf cells, and there is evidence that SAVs contain chloroplast proteins. Thus, an extra-plastidic pathway involving SAVs might participate in the degradation of some chloroplast proteins. Plastidic and extra-plastidic pathways might cooperate in the degradation of chloroplast proteins, or they might represent alternative, redundant pathways for photosynthetic protein degradation. 相似文献
18.
Jan P. Amend Douglas E. LaRowe Thomas M. McCollom Everett L. Shock 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1622)
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids. 相似文献
19.
Individual endplates were micro-dissected from chicken fast-twitch muscle, and the molecular forms of acetylcholinesterase and of pseudocholinesterase therein, identified by their sedimentation coefficients, were analysed directly. The forms actually present at the endplate, and those that are non-synaptic9 were established. This analysis was also extended to muscle of the chicken with inherited muscular dystrophy, showing altered distributions of these forms. 相似文献
20.
Previous studies in monkeys and humans have revealed neural correlates and perceptual consequences of feature-based attention. In this issue of Neuron, two brain-imaging studies from Serences and Boynton and Liu et al. bridge the gap between single neurons and behavior by demonstrating a highly functional attention system that acts on neural representations of our visual world enhancing the processing of the currently attended set of features at the expense of information about less relevant aspects. 相似文献