首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied in mice the effect of treatment with exogenous arginine and/or LPS by monitoring serum nitrite/nitrate levels and by investigating the response of cerebellar and liver nitric oxide synthase (NOS). We measured NOS activity in cerebellar extracts while changes in iNOS mRNA were followed in the liver since direct assay of NOS activity proved unreliable with this tissue. In fact, liver and cerebellum extracts were both very active in converting arginine into a citrulline-like metabolite, but only cerebellum conversion was dependent on addition of NADPH and inhibitable by N(G)-methyl-l-arginine. Treatment with LPS, on its own, increased serum nitrite/nitrate levels at 5 and 20 h after injection, while treatment with LPS and arginine produced nitrite/nitrate levels in the serum even greater at 5 h, but significantly lower at 20 h. Liver iNOS mRNA levels were markedly increased by LPS, and this effect was significantly decreased when mice were also given exogenous arginine. A stimulatory effect of LPS was also found on NOS activity in the cerebellum, where a very small stimulation may have also been caused by arginine feeding. These findings indicate that LPS stimulates NOS expression/activity both in the cerebellum and in the liver and suggest a complex pattern of modulation of iNOS by arginine, with NO being first produced in excess and then downregulating iNOS expression.  相似文献   

2.
Arginase constrains endothelial nitric oxide synthase activity by competing for the common substrate, L -Arginine. We have recently shown that inducible nitric oxide synthase (NOS2) S-nitrosates and activates arginase 1 (Arg1) leading to age-associated vascular dysfunction. Here, we demonstrate that a direct interaction of Arg1 with NOS2 is necessary for its S-nitrosation. The specific domain of NOS2 that mediates this interaction is identified. Disruption of this interaction in human aortic endothelial cells prevents Arg1 S-nitrosation and activation. Thus, disruption of NOS2-Arg1 interaction may represent a therapeutic strategy to attenuate age related vascular endothelial dysfunction.  相似文献   

3.
An increased production of nitric oxide (NO) via the inducible isoform of NO synthase (iNOS) has been incriminated in the pathogenesis of septic shock. Since the time course of iNOS activity is not known during endotoxic shock in dogs, we measured iNOS activity, estimated by the rate of conversion of (14)C-arginine to (14)C-citrulline in the absence of calcium, in the heart, lung, liver, kidney, and gut at 1, 2, 3, 4, and 6 h after a bolus of Escherichia coli endotoxin (2 mg/kg, iv), in the dog. This model, including generous fluid administration, is associated with typical features of human septic shock, including low systemic vascular resistance, altered myocardial function and limited oxygen extraction capability. An increase in iNOS activity was observed at 4 h in the liver (0.24 vs 0.04 mU/mg/min) and at 6 h in the heart (0.26 vs 0.09 mU/mg/min). These findings may contribute to a better delineation of the involvement of NO in endotoxic shock, and to the evaluation of the therapeutic effects of NO inhibitors.  相似文献   

4.
Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1 (IL-1) and tumor necrosis factor--(TNF-). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1 and TNF- were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1 were still significantly enhanced, but TNF- was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1 were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1 are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms.  相似文献   

5.
Nitric oxide (NO) plays a key role in vascular homeostasis. Accurate measurement of NO production by endothelial nitric oxide synthase (eNOS) is critical for the investigation of vascular disease mechanisms using genetically modified animal models. Previous assays of NO production measuring the conversion of arginine to citrulline have required homogenisation of tissue and reconstitution with cofactors including NADPH and tetrahydrobiopterin. However, the activity and regulation of NOS in vivo is critically dependant on tissue levels of these cofactors. Therefore, understanding eNOS regulation requires assays of NO production in intact vascular tissue that do not depend on the addition of exogenous cofactors and have sufficient sensitivity and specificity. We describe a novel technique, using radiochemical detection of arginine to citrulline conversion, to measure NO production within intact mouse aortas, without exogenous cofactors. We demonstrate the presence of arginase activity in mouse aortas which has the potential to confound this assay. Furthermore, we describe the use of N-hydroxy-nor-L-arginine (nor-NOHA) to inhibit arginase and permit specific detection of NO production in intact mouse tissue. Using this technique we demonstrate a 2.4-fold increase in NO production in aortas of transgenic mice overexpressing eNOS in the endothelium, and show that this technique has high specificity and high sensitivity for detection of in situ NO synthesis by eNOS in mouse vascular tissue. These results have important implications for the investigation of NOS regulation in cells and tissues.  相似文献   

6.
Nitric oxide (NO) regulates numerous processes during endotoxemia and inflammation. However, the sequential changes in whole body (Wb) nitric oxide (NO) production during endotoxemia in vivo remain to be clarified. Male Swiss mice were injected intraperitoneally with saline (control group) or lipopolysaccharide (LPS group). After 0, 2, 4, 6, 9, 12, and 24 h, animals received a primed constant infusion of L-[guanidino-(15)N(2)-(2)H(2)]arginine, L-[ureido-(15)N]citrulline, L-[5-(15)N]glutamine, and L-[ring-(2)H(5)]phenylalanine in the jugular vein. Arterial blood was collected for plasma arginine (Arg), citrulline (Cit), glutamine (Gln), and phenylalanine (Phe) concentrations and tracer-to-tracee ratios. NO production was calculated as plasma Arg-to-Cit flux, Wb de novo Arg synthesis as plasma Cit-to-Arg flux, and Wb protein breakdown as plasma Phe flux. LPS reduced plasma Arg and Cit and increased Gln and Phe concentrations. Two peaks of NO production were observed at 4 and 12 h after LPS. Although LPS did not affect total Arg production, de novo Arg production decreased after 12 h. The second peak of NO production coincided with increased Wb Cit, Gln, and Phe production. In conclusion, the curve of NO production in both early and late phases of endotoxemia is not related to plasma Arg kinetics. However, because Wb Cit, Gln, and Phe fluxes increased concomitantly with the second peak of NO production, NO production is probably related to the catabolic phase of endotoxemia.  相似文献   

7.
8.
Expression of inducible nitric oxide (NO) synthase (iNOS) and related enzymes of arginine metabolism in the mouse lung exposed to filamentous fungus Fusarium kyushuense was studied by RNA blot, immunoblot, and histological analyses. When mice were exposed intranasally to the fungi only once, no induction of iNOS mRNA was observed. However, when the animals were infected again 6 days after the first exposure, iNOS mRNA was induced, reached a maximum 12-24 h after the exposure, and decreased to an undetectable level at 48 h. mRNAs for cationic amino acid transporter-2 (CAT2) and argininosuccinate synthetase were induced gradually, reached a maximum at 24 h, and decreased at 48 h. Arginase II mRNA increased at 24 h and decreased markedly at 48 h. On the other hand, arginase I mRNA started to increase at 24 h and reached to a much higher level at 48 h. Ornithine decarboxylase and ornithine aminotransferase mRNAs were also induced. Immunoblot analysis showed that iNOS, argininosuccinate synthetase, and arginase I and II proteins were induced with similar kinetics as those of their respective mRNAs. In histological examination, fungal elements were observed in the bronchoalveolar lumen at 3-6 h, decreased at 12 h, and almost disappeared at 48 h. Small granuloma appeared 3 h after the infection and their size increased with time. These results suggest that NO is produced in the mouse lung in response to F. kyushuense exposure and that the NO production is regulated by CAT2, the citrulline-NO cycle, and arginase isoforms. Enhanced synthesis of polyamines and proline (and thus collagen) is also suggested.  相似文献   

9.
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.  相似文献   

10.
We have previously shown in rats that lipopolysaccharide (LPS) causes both decreased renal perfusion and kidney arginine production before nitric oxide (NO) synthesis, resulting in a >30% reduction in plasma arginine. To clarify the early phase effects of LPS, we asked the following two questions: 1) is the rapid change in renal arginine production after LPS simply the result of decreased substrate (i.e., citrulline) delivery to the kidney or due to impaired uptake and conversion and 2) is the systemic production of NO limited by plasma arginine availability after LPS? Arterial and renal vein plasma was sampled at 30-min intervals from anesthetized rats with or without citrulline or arginine (2 micromol.min(-1).kg(-1) iv) a dose with no effect on MAP, renal function, or NO production. Exogenous citrulline was quickly converted to arginine by the kidney, resulting in plasma levels similar to equimolar arginine infusion. Also, the increase in citrulline uptake resulted primarily from increased filtered load and reabsorption. In a separate series, citrulline was infused after LPS administration, verifying that citrulline uptake and conversion persists during impaired kidney function. Last, in rats given LPS, the elevation of plasma arginine had no discernable impact on mean arterial pressure, kidney function, or systemic NO production. This work demonstrates how arginine synthesis is normally "substrate limited" and explains how impaired kidney perfusion quickly results in decreased plasma arginine. However, contrary to in vitro studies, the significant reduction in extracellular arginine during the early phase response to LPS in vivo is not functionally rate limiting for NO production.  相似文献   

11.
Generation of superoxide from nitric oxide synthase   总被引:2,自引:0,他引:2  
  相似文献   

12.
Inducible nitric oxide synthase (iNOS) is associated with vascular hypocontractility in systemic vessels after endotoxin lipopolysaccharide (LPS) administration. Although lung iNOS is increased after LPS, its role in the pulmonary circulation is unclear. We hypothesized that whereas iNOS upregulation is responsible for LPS-induced vascular dysfunction in systemic vessels, iNOS does not play a significant role in the pulmonary artery (PA). Using isolated aorta (AO) and PA rings, we examined the effect of nonselective NOS inhibition [N(G)-monomethyl-L-arginine (L-NMMA); 100 micromol/l] and selective iNOS inhibition (aminoguanidine, AG; 100 micromol/l) on alpha(1)-adrenergic-mediated vasoconstriction (phenylephrine; 10(-9) to 10(-3) M) after LPS (Salmonella typhimurium, 20 mg/kg ip). We also determined the presence of iNOS using Western blot and immunohistochemistry. LPS markedly impaired AO contractility (maximal control tension 1,076 +/- 33 mg vs. LPS 412 +/- 39 mg, P < 0.05), but PA contractility was unchanged (control 466 +/- 29 mg vs. LPS 455 +/- 27 mg, P > 0.05). Selective iNOS inhibition restored the AO's response to vasoconstriction (LPS + AG 1,135 +/- 54 mg, P > 0.05 vs. control and P < 0.05 vs. LPS), but had no effect on the PA (LPS + AG 422 +/- 38 mg, P > 0.05 vs. control and LPS). Western blot and immunohistochemistry revealed increased iNOS expression in the AO after LPS, but iNOS was not detected in the PA. Our results suggest that differential iNOS expression after LPS in systemic and pulmonary vessels contributes to the phenomenon of sepsis/endotoxemia-induced systemic hypotension and pulmonary hypertension.  相似文献   

13.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

14.
A protein inhibitor of neuronal nitric oxide synthase (nNOS) was identified and designated as PIN. PIN was reported to inhibit nNOS activity in cell lysates through disruption of enzyme dimerization. However, there has been lack of direct characterization of the effect of PIN on NO production from purified nNOS. Furthermore, nNOS also generates superoxide (.O(2)(-)) at low levels of L-arginine. It is unknown whether PIN affects .O(2)(-) generation from nNOS. Therefore, we performed direct measurements of the effects of PIN on NO and .O(2)(-) generation from purified nNOS using electron paramagnetic resonance spin trapping techniques. nNOS was isolated by affinity chromatography and a fusion protein CBP-PIN was used to probe the effect of PIN. While the tag CBP did not affect nNOS activity, CBP-PIN caused a dose-dependent inhibition on both NO and L-citrulline production. In the absence of L-arginine, strong .O(2)(-) generation was observed from nNOS, and this was blocked by CBP-PIN in a dose-dependent manner. With low-temperature polyacrylamide gel electrophoresis, neither CBP nor CBP-PIN was found to affect nNOS dimerization. Thus, these results suggested that PIN not only inhibits NO but also .O(2)(-) production from nNOS, and this is through a mechanism other than decomposition of nNOS dimers.  相似文献   

15.
The objective of this study was to determine whether constitutive nitric oxide (NO) synthase from rat cerebellum could be regulated by the two products of the reaction, NO and L-citrulline, utilizing L-arginine as substrate. NO synthase activity was determined by monitoring the formation of 3H-citrulline from 3H-L-arginine in the presence of added cofactors. The rate of citrulline formation in enzyme reaction mixtures was non-linear. Addition of superoxide dismutase (SOD; 100 units) inhibited NO synthase activity and made the rate of product formation more non-linear, whereas addition of oxyhemoglobin (HbO2; 30 microM) increased NO synthase activity, made the rate of product formation linear and also abolished the effect of SOD. Added NO (10 microM) inhibited NO synthase activity and this inhibition was potentiated by SOD and abolished by HbO2. Added L-citrulline (1 mM) did not alter NO synthase activity. The two NO donors, S-nitroso-N-acetylpenicillamine (200 microM) and N-methyl-N'-nitro-N-nitrosoguanidine (200 microM) mimicked the inhibitory effect of NO and inhibition of NO synthase activity by NO was reversible. These observations indicate clearly that NO formed during the NO synthase reaction or added to the enzyme reaction mixture causes a reversible inhibition of NO synthase activity. Thus, NO may function as a negative feedback modulator of its own synthesis.  相似文献   

16.
Iwanaga T  Yamazaki T  Kominami S 《Biochemistry》1999,38(50):16629-16635
Rat neuronal nitric oxide synthase (nNOS) was heterologously expressed in Escherichia coliand purified. The conversion of L-arginine to N(omega)-hydroxy-L-arginine and further to L-citrulline in one cycle of the reaction of the purified nNOS was measured with the reaction rapid quenching method using (3)H-L-arginine as the substrate. It was found that most of the produced (3)H-N(omega)-hydroxy-L-arginine was successively hydroxylated to (3)H-L-citrulline without leaving the enzyme. From the analysis of time courses, the rate constants for each reaction step, and also for the dissociation of the intermediate, were estimated at various temperature in which the rates for the first and the second reactions were not much different each other but the rate for the dissociation of (3)H-N(omega)-hydroxy-L-arginine from the enzyme was significantly slow. Under the steady-state reaction condition, almost all of the nNOS was estimated to be active from the amount of burst formation of L-citrulline in the pre-steady state. The rate constant for the dissociation of the product L-citrulline from nNOS was calculated from the combination of results of the rapid quenching experiments and the metabolism of L-arginine in the presence of an excess amount of substrate, which was the smallest among all the rate constants in one cycle of the nNOS reaction. The activation energies for all the reaction steps were determined from the temperature dependence of the rate constants, which revealed that the rate-determining step of the nNOS reaction in the steady state was the dissociation of the product L-citrulline from the enzyme.  相似文献   

17.
The interdependent relationships among nitric oxide synthase (NOS), its coenzyme, cofactors and nitric oxide (NO(free radical) were studied using electron paramagnetic resonance spectroscopy. It was found that superoxide-dependent hydroxyl free radical (OH(free radical), derived from NOS coenzyme and cofactors, inhibits NOS activity, and that endogenous NO(free radical) generated by NOS scavenges OH(free radical) and protects NOS function. These results reveal a new role for NO(free radical) that may be important in NOS function and cellular free radical homeostasis.  相似文献   

18.
Although normal intracellular levels of arginine are well above the K(m), and should be sufficient to saturate nitric oxide synthase in vascular endothelial cells, nitric oxide production can, nonetheless, be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox," has suggested the existence of a separate pool of arginine directed to nitric oxide synthesis. In this study, we demonstrate that exogenous citrulline was as effective as exogenous arginine in stimulating nitric oxide production and that citrulline in the presence of excess intracellular and extracellular arginine further enhanced bradykinin stimulated endothelial nitric oxide production. The enhancement of nitric oxide production by exogenous citrulline could therefore be attributed to the capacity of vascular endothelial cells to efficiently regenerate arginine from citrulline. However, the regeneration of arginine did not affect the bulk intracellular arginine levels. This finding not only supports the proposal for a unique pool of arginine, but also suggested channeling of substrates that would require a functional association between nitric oxide production and arginine regeneration. To support this proposal, we showed that nitric oxide synthase, and the enzymes involved in arginine regeneration, argininosuccinate synthase and argininosuccinate lyase, cofractionated with plasmalemmal caveolae, a subcompartment of the plasma membrane. Overall, the results from this study strongly support the proposal for a separate pool of arginine for nitric oxide production that is defined by the cellular colocalization of enzymes involved in nitric oxide production and the regeneration of arginine.  相似文献   

19.
Since nitric oxide (NO) is synthesized by nitric oxide synthase (NOS) froml-arginine (Arg) which has an amidino group in its molecule, we, examined the effect of 29 kinds of Arg analogues on neuronal NOS (nNOS) activity in the rat brain. None of the Arg analogues acted as a substrate for nNOS. Diamidinocystamine, hirudonine, and guanethidine inhibited nNOS activity to 67.3%, 64.2% and 74.1%, respectively, but their inhibitory efficiency was lower than NG-monomethyl-l-arginine (to 36.5%) which is a well known NOS inhibitor. Dimethylguanidine and N-benzoylguanidine also significantly inhibited nNOS activity to 88.0% and 90.7%, respectively. Whereas almost all of the NOS inhibitors previously reported were synthesizdd by substituting the amidino nitrogen of Arg, none of these new inhibitors were substituted at this position. Furthermore, hirudonine, which is a naturally occurring compound, was thought to act as an agonist at polyamine binding site of the N-methyl-d-aspartate type of glutamate receptor complex. It is also interesting that guanethidine, an antihypertensive agent, inhibit nNOS activity. These new drugs are useful for the investigation not only of the chemical nature of nNOS but also of the physiologic function of NO.  相似文献   

20.
《Life sciences》1996,59(10):PL121-PL125
We investigated the effects of inotropic agents with phosphodiesterase III inhibitory properties, amrinone, pimobendan and vesnarinone, and cell permeable cyclic nucleotide analogue, 8-bromo adenosine 3′5′-cyclic monophosphate (8 Br-cAMP) on the induction of nitric oxide synthase (NOS) by lipopolysaccharide in J774A. 1 macrophages in vitro. Although all three inotropic agents inhibited nitrite accumulation, the degree of inhibition was different, with pimobendan being the most potent inhibitor and amrinone the least. Vesnarinone inhibited nitrite formation biphasically. 8 Br-cAMP increased nitrite production at high concentrations, suggesting that the inhibitory effects of inotropic agents could not be explained by an increase in cAMP. Although differential inhibition of inducible NOS by inotropic agents may explain the different effects of these drugs in patients with heart failure, further study is necessary to reach this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号