首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
beta-Carotene has often been discussed as a means to reduce the risk of skin photodamage. We studied the antioxidative potential of beta-carotene in human skin fibroblasts exposed to ultraviolet A light. Surprisingly, we found a pro-oxidative effect of beta-carotene. Using the induction of haem oxygenase-1 as a marker for oxidative stress, we found a strong enhancement of gene expression by beta-carotene in ultraviolet A-irradiated cells. This effect was clearly suppressed by concomitant addition of vitamin E but only moderately by vitamin C. The results show that beta-carotene has pro-oxidative properties in human skin fibroblasts exposed to ultraviolet-A light.  相似文献   

2.
Thrombin stimulated human skin fibroblasts to retract fibrin clots. When Bothrops marajoensis thrombinlike enzyme was substituted for thrombin, no retraction occurred. Fibroblasts were found to contain 12 nmole of ATP and 3.6 nmole of ADP/mg of protein, a value closely resembling that of nonmetabolic adenine nucleotides in platelets. Thrombin caused neither release of adenine nucleotides from the suspension of fibroblasts harvested enzymatically nor did addition of ADP stimulate fibroblasts to retract fibrin clots.  相似文献   

3.
If cultured in media supplemented with adenosine triphosphate (ATP), EDTA, trypsin, thrombin, or incubated at 0-15 degrees C, human skin fibroblasts (HSF) and human gingival fibroblasts (HGF) change from long attached elliptical to round floating cell cultures. Also, if treated with ATP, EDTA, trypsin, thrombin, or incubated at 0-15 degrees C, the attached HFS or HGF monolayers detach from plastic substratum and form floating round cells that progressively aggregate together and die. The described experiments examined the role of cellular and extracellular ATP on HSF and HGF attachment. These two types of fibroblasts differed in their cellular ATP levels and their response to metabolic inhibitors. ATP causes destruction of microtubules as monitored by colcemid uptake and cellular detachment. Fibronectin protects both HSF and HGF from the effects of extracellular ATP.  相似文献   

4.
Production of glycosaminoglycans (GAG) by human skin fibroblasts cultured in collagen lattices closely resembled that already described for the same cells grown as monolayers on plastic. There was no inhibition of GAG corresponding to that of DNA and protein synthesis and similar controls by cell density and anti-inflammatory drugs operated in 3-dimensional as in 2-dimensional culture. The bulk of the GAG synthesised in lattice culture was hyaluronic acid, as in monolayers.  相似文献   

5.
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.  相似文献   

6.
Human skin may be considered as a target organ for androgens, as are male sex accessory organs, since all events involved in testosterone action have been observed in this tissue. As a corollary, the mechanism of androgen action can be studiedin vitro in cultured skin fibroblasts. The advantages of this system are that studies can be performed with intact human cells under carefully controlled conditions, differentiated genetic and biochemical characteristics of the cells are faithfully preserved and the biological material is renewable from a single biopsy specimen. The metabolism of androgens, in particular the 5α-reduction of testosterone to the active metabolite, dihydrotestosterone, the intracellular binding of androgen to its specific receptor protein and its subsequent translocation to the nucleus have been studied in skin fibroblasts. The intracellular androgen receptor content of genital skin fibroblasts is higher than that from nongenital skin sites. In addition, the androgen receptor has been characterized as a specific macromolecule with properties of high affinity and low capacity similar to that of other steroid hormone receptors. The pathophysiology of three genetic mutations which alter normal male sexual development and differentiation has been identified in the human skin fibroblast system. In 5α-reductase deficiency, an autosomal recessive disorder in which dihydrotestosterone formation is impaired, virilization of the Wolffian ducts is normal but the external genitalia and urogenital sinus derivatives are female in character. At least two types of X-linked disorders of the androgen receptor exist such that the actions of both testosterone and dihydrotestosterone are impaired and developmental abnormalities may involve both Wolffian derivatives and the external genitalia as well. These two forms of androgen insensitivity result from either the absence of androgen receptor binding activity (receptor(−)form) or apparently normal androgen receptor binding with absence of an appropriate biological response (receptor (+) form). In addition, studies with human skin fibroblasts may also be of value in defining the cellular mechanisms underlying the broad spectrum of partial defects in virilization. In summary, we have correlated our studies of the molecular mechanism of androgen action in human genital skin fibroblasts with those of other investigators as these studies contribute to our understanding of male sexual development and differentiation.  相似文献   

7.
8.
9.
Summary Fanconi anaemia (FA) cells are extremely sensitive to crosslinking agents, e. g. mitomycin C, but only moderately sensitive to trimethylpsoralen plus UVA. Evidence has been reported suggesting that there is a deficient DNA crosslink repair mechanism in FA cells, but others failed to confirm this conclusion using other methods and other crosslinking agents. We reinvestigated the mitomycin C and 8-methoxypsoralen crosslink repair in FA cells with a high sensitivity to mitomycin C. Although an essentially similar methodology was used to that previously described, no difference between the control and FA cell strains was observed, neither for mitomycin C- nor for 8-methoxypsoralen-induced crosslinks.  相似文献   

10.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

11.
Sphingomyelin (SM) and free cholesterol (FC) are concentrated in the plasma membranes of eukaryotes; however, the physiological significance of their association is unclear. A common tool for studying the role of membrane SM is digestion with bacterial sphingomyelinase (SMase) C, which hydrolyzes SM to ceramide. However, it is not known whether the observed effects of SMase C treatment are due to the loss of SM per se or to the signaling effects of ceramide. In this study, we tested SMase D from Corynebacterium pseudotuberculosis, which hydrolyzes SM to ceramide phosphate, as an alternative probe. This enzyme specifically hydrolyzed SM in fibroblasts without causing accumulation of ceramide. Treatment of fibroblasts with SMase D stimulated translocation of PM FC to intracellular sites by <20% of the rate observed after SMase C digestion. The cells regenerated SM nearly completely within 5 h after SMase C treatment. However, even after 20 h, no regeneration occurred following SMase D digestion. These findings suggest that the translocation of PM FC caused by SMase C digestion is due to the cellular effects of ceramide rather than the loss of SM. Since ceramide phosphate does not appear to have such effects, we suggest that SMase D is a useful probe of membrane SM.  相似文献   

12.
Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with gamma-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both gamma-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.  相似文献   

13.
Summary Amphotericin B inhibits hydroxymethylglutarylcoenzyme A (HMGCoA) reductase activity and incorporation of [3H]acetate into sterols and fatty acids of human skin fibroblasts. Delivery of cholesterol to cells via the low density lipoprotein receptor pathway is not altered. The effects of amphotericin B on cell lipid metabolism are partially reversed by both potassium and insulin. Portions of this work were presented at the Southern Regional Meeting of the American Federation for Clinical Research, January 1983.  相似文献   

14.
The effect of insulin on hexose transport in cultured human skin fibroblasts. Studies were carried out on cultures of human skin fibroblasts to explore the effect of insulin on hexose transport in serum-starved monolayers. Insulin (100 mU/ml) stimulated 2-deoxy-D-glucose transport (30% above control values) after 30 minutes exposure time, the response being similar up to four hours exposure to insulin. In several experiments (n = 22) employing three cell strains, insulin (100 mU/ml) exposure led to variable stimulation of 2-deoxy-D-glucose transport (an average of 37% above control values, with a range of 0 = 120%). The insulin-induced stimulation of 2-deoxy-D-glucose transport showed a dose dependency with increasing amounts of insulin, the response being maximal at an insulin concentration of 100 mU/ml. Kinetic analysis of 2-deoxy-D-glucose transport showed that insulin addition resulted in a slight change in the transport Km (3.13 to 4.06 mM) and a 1.8-fold increase in the transport Vmax (17.6 nanomoles/mg protein/min to 32.1 nanomoles/mg protein/min). Insulin also stimulated the transport of 3-0-methyl-D-glucose while the hexokinase activity of the cells was not affected. Further, this insulin-induced stimulation of sugar transport was not blocked by cycloheximide. The results indicate that insulin stimulated the stereospecific carrier-mediated of hexose transport in cultured human skin fibroblasts.  相似文献   

15.
We have investigated the effects of monensin, a monovalent cationophore, on the metabolism of neutral lipids, fatty acids, ceramide and phospholipids in cultured human skin fibroblasts. Treatment with 1 microM monensin for 18 h reduced the cellular cholesterol ester content to less than one-third of untreated cells, and incorporation of [3H]acetate into cholesterol ester was also reduced, to less than one-fifth. Concomitantly, a greater conversion of [3H]acetate into free cholesterol occurred. There was a moderate increase in free fatty acids, but no change in triacylglycerol content, although the content of the latter appeared to increase in the presence of fetal calf serum in the culture medium. Phosphatidylcholine decreased in content and phosphatidylserine increased among the phosphatides, but ceramide remained unchanged after monensin treatment. These findings suggest that monensin influences the metabolic interrelationships of structural lipids in fibroblasts.  相似文献   

16.
The in vitro degradation of [35S]chondroitin sulfate was investigated in human fibroblasts and rat liver. In rat liver, preparations of chondroitin sulfate were shown to be degraded by the concerted action of endoglycosidase and exoglycosidases. However, with human skin fibroblast preparations, hyaluronidase activity was not detected and chondroitin sulfate was degraded by exoglycosidase action.  相似文献   

17.
A dramatic and specific induction of c-fos mRNA was observed in human skin fibroblasts in vitro culture by oxygen reperfusion after oxygen deficiency treatment. C-fos mRNA reached a maximum about 30-60 min after oxygen reperfusion and declined to basal level after 120 min. And this phenomenon was duration of oxygen deficiency-dependent, and remarkably observed for 0.5-2 hr of oxygen deficiency. More long duration of oxygen deficiency induced a decreasing tendency of c-fos mRNA overexpression due to essential and irreversible cellular damage. Thus increased c-fos gene expression might be an early event in cellular recovery process in particularly human skin fibroblasts with oxygen deficiency.  相似文献   

18.
The UVA-absorbing photoproduct resulting from the oxidation of the sulfur atom and of the side chain nitrogen of the phototoxic drug cyamemazine (CMZ) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-phenothiazine) is a potent photodynamic photosensitizer. The photophysical and photochemical properties of this photoproduct (P) (2-cyano-10-(3-[dimethylamino, N-oxide]-2-methylpropyl)-5-oxide-phenothiazine)) have been investigated in neutral buffered aqueous solutions and in ethanol and compared to those of the sulfoxide (S) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-5-oxide-phenothiazine), a CMZ oxidation product of cells. The fluorescence quantum yield (PhiF) of P is 0.25 and 0.21 in pH 7 phosphate buffer and ethanol, respectively. By contrast, S (PhiF = 0.14 in buffer) is practically unfluorescent in alcohol. In buffer, the fluorescence lifetimes of P and S are 10.5 and 11.8 ns, respectively. The transient absorbance of the first excited triplet state (3P1) with a characteristic absorption band peaking at 660 nm (epsilon = 5,300 M(-1) cm(-1)) has been observed by 355 nm laser flash spectroscopy of deaerated phosphate buffer or ethanol solutions. In buffer, the 3P1 lifetime is 0.5 micros. The energy transfer which occurs from the 3P1 to naproxen suggests that the 3P1 energy is greater than 62 kcal mol(-1). Triplet quenching by dioxygen occurs at rate 2.3 x 10(9) M(-1) s(-1). With the triplet benzophenone as actinometer, the 3P1 formation quantum yield is found to be 0. 40 in buffer. The 3P1 state is quenched by ethanol and 2-propanol with bimolecular reaction rate constants of 1.6 and 2.4 x 10(6) M(-1) s(-1), respectively. In buffer, P and S triplet states react with tryptophan, indole and cysteine at rate constants of the order of 10(9) M(-1) s(-1) for Trp and indole and 10(8) M(-1) s(-1) for Cys.  相似文献   

19.
Perturbation of oxidant/antioxidant cellular balance, induced by cellular metabolism and by exogenous sources, causes deleterious effects to proteins, lipids, and nucleic acids, leading to a condition named "oxidative stress" that is involved in several diseases, such as cancer, ischemia-reperfusion injury, and neurodegenerative disorders. Among the exogenous agents, both H(2)O(2) and hyperthermia have been implicated in oxidative stress promotion linked with the activation of apoptotic or necrotic mechanisms of cell death. The goal of this work was to better understand the involvement of some stress-related proteins in adaptive responses mounted by human fibroblasts versus the oxidative stress differently induced by 42 degrees C hyperthermia or H(2)O(2.) The research was developed, switching off inducible nitric oxide synthase (iNOS) expression through antisense oligonucleotide transfection by studying the possible coregulation in the expression of HSP32 (also named HO-1), HSP70, and iNOS and their involvement in the induction of DNA damage. Several biochemical parameters, such as cell viability (MTT assay), cell membrane integrity (lactate dehydrogenase release), reactive oxygen species formation, glutathione levels, immunocytochemistry analysis of iNOS, HSP70, and HO-1 levels, genomic DNA fragmentation (HALO/COMET assay), and transmembrane mitochondrial potential (deltaPsi) were examined. Cells were collected immediately at the end of the stress-inducing treatment. The results, confirming the pleiotropic function of i-NOS, indicate that: (i). HO-1/HSP32, HSP70, and iNOS are finely tuned in their expression to contribute all together, in human fibroblasts, in ameliorating the resistance to oxidative stress damage; (ii). ROS exposure, at least in hyperthermia, in human fibroblasts contributes to growth arrest more than to apoptosis activation; and (iii). mitochondrial dysfunction, in presence of iNOS inhibition seems to be clearly involved in apoptotic cell death of human fibroblasts after H(2)O(2) treatment, but not after hyperthermia.  相似文献   

20.
This study determined the radiosensitivity of the human tumor xenograft HT29 and its glutathione (GSH) and cysteine (CYS) contents after treatment with both buthionine sulfoximine (BSO) and SR-2508 or SR-2508 alone. Tumor radiosensitivity was assessed by the in vitro colony assay and thiol content was measured by high-performance liquid chromatography. The radiosensitizing effect of SR-2508 is dose dependent and increases when higher doses of radiation are given. SR-2508 given alone does not modify GSH and CYS content; however, when given with BSO, the GSH level is significantly reduced, yet radiosensitivity of the HT29 tumor is only slightly increased. These results have been compared to our previously observed results of HT29 treatment with misonidazole (MISO), BSO, or MISO + BSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号