首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes.  相似文献   

2.
Synthetic procedures are described that allow access to new copper(II) complexes with dipeptides containing the alpha-aminoisobutyric residue (Aib) as ligands. The solid complexes [Cu(H(-1)L(A))](n).nH(2)O (1) (L(A)H=H-Aib-Gly-OH), [Cu(H(-1)L(B))(MeOH)](n).nMeOH (2) (L(B)H=H-Aib-L-Leu-OH) and [Cu(H(-1)L(C))](n) (3) (L(C)H=H-Aib-L-Phe-OH) have been isolated and characterized by single-crystal X-ray crystallography, solid-state IR spectra and UV-Vis spectroscopy in solution (H(-1)L(2-) is the dianionic form of the corresponding dipeptide). Complexes 1 and 3 are three-dimensional coordination polymers with similar structures. The doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate), O(peptide) mu(3) ligand and binds to one Cu(II) atom at its amino and peptide nitrogens and at one carboxylate oxygen, to a second metal at the other carboxylate oxygen, while a third Cu(II) atom is attached to the peptide oxygen. The geometry around copper(II) is distorted square pyramidal with the peptide oxygen at the apex of the pyramid. The structure of 2 consists of zigzag polymeric chains, where the doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate) mu(2) ligand. The geometry at copper(II) is square pyramidal with the methanol oxygen at the apex. The IR data are discussed in terms of the nature of bonding and known structures. The UV-Vis spectra show that the solid-state structures of 1, 2 and 3 do not persist in H(2)O.  相似文献   

3.
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is 相似文献   

4.
The phenol-based compartmental ligand Hpy2ald contains a tridentate amino arm and a weak donor aldehyde group at the 2 and at the 6 positions of the phenol ring, respectively. This ligand reacts with cobalt(II) perchlorate, cobalt(II) tetrafluoroborate and manganese(II) perchlorate, yielding dinuclear complexes, where two metal ions are doubly bridged by two deprotonated cresolate moieties. The coordination environment around the metal ions is then completed to a very distorted octahedron by three nitrogen donor atoms from the pendant amino arm and the oxygen atom of the aldehyde group. The crystal structures of the complexes, their spectroscopic and magnetic properties are reported.  相似文献   

5.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N(4)-(7'-chloroquinolin-4'-ylamino)-N(1)-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N(4)-(7'-chloroquinolin-4'-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, (1)H and (13)C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram - ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

6.
The interactions of potassium tetrachloropalladate(II) with the B6 vitamins pyridoxal, pyridoxine, and pyridoxamine in 1:1 molar ratio have been studied. From DMF solutions, the ionic trichloro (pyridoxal or pyridoxine) palladates(II) were isolated. Pyridoxamine, on the other hand, in aqueous solutions gave the dimeric complex bis [mu-chloro-pyridoxaminato-palladium(II)]. In the first two complexes, the ligands coordinated to palladium through their pyridine nitrogen while, in the last one, pyridoxamine acted as a chelating ligand through its phenolic oxygen and aminomethyl nitrogen. All three complexes reacted with nucleosides, yielding the complexes [Pd(PL)(Nucl)Cl2], [Pd(PN)(Nucl)Cl2], and [Pd(PM-H+)(Nucl)Cl], respectively. Those complexes with one ionizable N(1)H imino proton underwent deprotonation, and the new mixed ligand complexes [Pd(PL)(Nucl-H+)Cl], [Pd(PN)(Nucl-H+)], and [Pd(PM-H+)(Nucl-H+)] were formed. In all mixed ligand complexes, the B6 vitamins maintained their coordination modes. The nucleosides, on the other hand, exhibited their usual coordination sites, i.e., in the nondeprotonated complexes, purine nucleosides coordinated only through their N7 atom. In the deprotonated complexes, they acted as bidentate ligands and coordinated through their N7 and O6 atoms. All complexes were characterized with elemental analyses, conductivity measurements, and various spectroscopic techniques.  相似文献   

7.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N4-(7′-chloroquinoline-4′-ylamino)-N1-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N4-(7′-chloroquinolin-4′-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram ? ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

8.
The coordination behaviour of the title ligand, 5-methyl-3-formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone(HMPz4BM), is reported with solid state isolation of copper(II) complexes, [Cu(HMPz4BM)X2] (X = Cl, Br, NO3, ClO4 and BF4) which have been spectroscopically and structurally characterised. I.r. data for the free ligand and its Cu(II) complexes indicate that HMPz4BM exhibits a neutral NNS tridentate function via the pyrazolyl nitrogen(tertiary), azomethine nitrogen and thione sulphur. Electronic spectral data are suggestive of a square pyramidal environment for the seemingly pentacoordinated Cu(II) species. E.s.r parameters (RT and LNT) of the reported copper(II) complexes are indicative of a dxx2–y2 ground state for the reported species. Cyclic voltammograms of Cu(II) complexes show a quasireversible CuII/CuIII couple and also an irreversible CuII/CuI couple. X-ray crystallography of a representative species, [Cu(HMPz4BM)(NO3)2] (C2/c, monoclinic ), has unambiguously documented the conjectural findings from i.r. data that coordinating sites of the title ligand are pyrazolyl (tertiary)nitrogen, azomethine nitrogen and the thione sulphur (NNS); and the oxygen of one of the nitrate ions has occupied the basal plane; the fifth coordination position has been occupied by the oxygen of another nitrate ion in a square pyramidal geometry. The antibacterial properties of the ligand and its copper(II) complexes studied on microorganism, Staphylococcus aureus have pointed out that most of the complexes have higher activities than that of the free ligand.  相似文献   

9.
The water-oxidizing complex (WOC) within photosystem II (PSII) can be reconstituted with synthetic manganese complexes by a process called photoactivation; however, the key factors affecting the efficiency of synthetic manganese complexes in reconstitution of electron transport and oxygen evolution activity in manganese-depleted PSII remain unclear. In the present study, four complexes with different manganese coordination environments were used to reconstitute the WOC, and an interesting relationship was found between the coordination environment of the manganese atom in the complexes and their efficiency in restoring electron transport and oxygen evolution. If Mn(II) is coordinated to nitrogen atoms within the ligand, it can restore significant rates of electron transport and oxygen evolution; however, if the manganese atom is coordinated only to oxygen atoms instead of nitrogen atoms, it has no capability to restore electron transport and oxygen evolution. So, our results demonstrate that the capability of manganese complexes to reconstitute the WOC is mainly determined by the coordination between nitrogen atoms from ligands and the manganese atom. It is suggested from our results that the ligation between the nitrogen atom and the manganese atom within the manganese complex facilitates the photoligation of the manganese atom to histidyl residues on the apo-protein in manganese-depleted PSII during photoactivation.  相似文献   

10.
As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the peptide ligand N-(2-(4-imidazolyl)ethyl)pyridine-2-carboxamide (pypepH2) resembling a fragment of the metal-binding domain of bleomycins (BLMs), have been isolated. Reaction of pypepH2 with (Et4N)[GaCl4] and Ga(acac)3 [acac- is the acetylacetonate(-1) ion] affords the mononuclear complex [Ga(pypepH)2]Cl.2H2O (1) and the tetranuclear complex [Ga4(acac)4(pypep)4].4.4H2O (2), respectively. Both complexes were characterized by single-crystal X-ray crystallography, IR spectroscopy and thermal decomposition data. The pypepH- ion in 1 behaves as a N(pyridyl), N(deprotonated amide), N(pyridine-type imidazole) chelating ligand. The doubly deprotonated pypep2- ion in 2 behaves as a N(pyridyl), N(deprotonated amide), N(imidazolate), N'(imidazolate) mu2 ligand and binds to one Ga(III) atom at its pyridyl, amide and one of the imidazolate nitrogens, and to a second metal ion at the other imidazolate nitrogen; a chelating acac- ligand completes six coordination at each Ga(III) centre. The IR data are discussed in terms of the nature of bonding and known structures. The 1H NMR spectrum of 1 suggests that the cation of the complex maintains its integrity in dimethylsulfoxide (DMSO) solution. Complexes 1 and 2 are the first synthetic analogues of metallobleomycins with gallium(III).  相似文献   

11.
Copper(II), nickel(II) and cobalt(II) complexes of the aspirin metabolite salicylglycine (H2L), of stoichiometry M(HL)2·solvate, have been prepared and characterised. In these complexes salicylglycinate is coordinated to the metal via its carboxylato group and possibly also its amide oxygen in the copper(II) complex. Under basic conditions copper(II) forms the complex Cu(LH−1)·2H2O·MeOH, in which the ligand is coordinated to the metal via its carboxylate and phenolate oxygen atoms and the deprotonated peptide nitrogen atom.  相似文献   

12.
The protonation equilibria of alanylglycylhistamine (Ala-Gly-Ha) and the complexation of this ligand with Cu(II) and Ni(II) have been studied by pH-potentiometry, 1H and 14N NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), UV-Vis spectrophotometry and electron paramagnetic resonance (EPR). From pH approximately 2-12, the following complexes: MLH, MLH(-1), MLH(-2) and MLH(-3) are successively formed in aqueous solutions, the ligand under its neutral form being noted L. At physiological pH, the MLH(-2) complex is predominant. The coordination in this complex is assumed by one amino, two deprotonated peptide and one imidazole nitrogen atoms. The ESI-MS study confirmed the formation of the MLH(-1), MLH(-2) and MLH(-3) complexes. The structure of MLH(-2) was determined by single crystal X-ray analysis. CD and UV-Vis techniques allowed us to propose that the imidazole-N3 nitrogen acts as the anchor group for the coordination to the metal(II) ions rather than the amino group. At high pH values, the further deprotonation of the N-H imidazole group, leading to the formation of MLH(-3), occurs, as revealed by 1H NMR spectroscopy.  相似文献   

13.
The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.  相似文献   

14.
Palladium(II) complexes of the peptides GlyMet, GlyMetGly and GlyGlyMet containing methionyl residues were studied by potentiometric and 1H NMR spectroscopic methods. The coordination of terminal amino and deprotonated amide nitrogen and thioether sulfur donor atoms was suggested in the mono complexes of GlyMet and GlyMetGly. The fourth coordination site of these complexes can be occupied by solvent molecule, chloride or hydroxide ions or by another ligand molecule in the bis or mixed ligand complexes. The second ligand coordinates monodentately via the thioether function in acidic media and the amino group under neutral or basic conditions. The stoichiometry of the major species formed in the palladium(II)-GlyGlyMet system is [PdH(-2) L]- and this is coordinated by the amino, two-amide and the thioether donor functions. Thioether bridged mixed metal complexes formed in the reaction of [Pd(dien)]2+ and [Cu(GlyMetH(-1))] or [Ni(GlyMetGlyH(-2))]- also have been detected by spectroscopic techniques.  相似文献   

15.
A series of new Pt(II) complexes of hydrazinouracils were synthesized and studied. The complexes have the general formula [Pt2L2?Cl2]nH2O, where L? is a deprotonated molecule of a ligand, n = 1?3 and there are two bridging chloride ions. The ligands are bonded through the amino group of the hydrazine residue and the nitrogen atom of the pyrimidine cycle. From 1H NMR data it is concluded that the preferred type of coordination is Pt- N(3), hydrazine chelation, which is characteristic for solid complexes. Although the participation of the N(1) atom in formation on the polynuclear complexes is possible, it may be that N(1) coordination occurs only in solutions.  相似文献   

16.
Two novel Cd(II) and Zn(II) complexes with the condensation product of 2-formylpyridine and selenosemicarbazide were synthesized. The structure of Cd(II) complex was determined by X-ray crystallography. The ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms and the selenium donor. The cadmium ion completes its five-coordination by two chloride ligands, forming a square-pyramidal geometry. The structure of Zn(II) complex was established by analysis of spectroscopic data, which indicated coordination of the ligand as a bidentate via the selenium and the azomethine nitrogen atoms. The cytotoxic activity of the newly synthesized complexes, as well as if five structurally related complexes and the ligand evaluated against eight tumor cell lines. The new Cd(II) complex showed the highest activity similar to cisplatin with IC50 less than 10 μM for all cell lines. Cell cycle distribution and apoptosis study showed that Cd(II) complex and cisplatin might have some similarity in anticancer activity, which was not the case for cisplatin and other studied complexes. Effects of the complexes on matrix metalloproteinases (MMPs) MMP-9 and MMP-2 was also studied. Cd(II) and Zn(II) complexes and cisplatin increased MMP-2 activity in supernatants of tested cells, while Ni(II) complex with the same ligand decreased the activity, implying a possible activity in preventing tumor invasion and metastasis processes.  相似文献   

17.
A new coordination polymer Zn(II) with thiosemicarbazone glyoxalic acid H2GAT was obtained in this study. According to the X-ray diffraction data, the coordination of the Zn(II) ion is carried out by one sulfur atom, in the thiol form, one nitrogen atom of the azomethine group and two oxygen atoms of the carboxylate groups, one of which belongs to neighbouring complex molecule. The oxygen atom of the water molecule completes Zn(II) ion environment to a distorted square-pyramidal structure. The binding of the monomer complex into polimer occurs through the bridge oxygen atom of carboxylate group. This complex is effective inhibitor of the α-glycosidase, butyrylcholinesterase (BChE), cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase enzymes (AChE) enzymes with Ki values of 1.45 ± 0.23 µM for hCA I, 2.04 ± 0.11 µM for hCA II, 3.47 ± 0.88 µM for α-glycosidase, 0.47 ± 0.10 µM for BChE, and 0.58 ± 0.13 µM for AChE, respectively.  相似文献   

18.
The reaction of oxythiamine chloride hydrochloride (HOxTCl x HCl) with ZnCl2, CdCl2 and HgCl2 in ethanol yielded the complexes [ZnCl3(HOxT)], [CdCl3(HOxT)] and [HgCl3(HOxT)]. In water, the reaction with CdCl2 afforded [CdCl2(OxT)], but reaction with ZnCl2 or HgCl2 yielded unidentified products. The four new complexes were characterized by mass spectrometry and IR spectroscopy in the solid state and by 1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopy in hexadeuterated dimethylsulfoxide (DMSO-d6), and three were also studied by X-ray diffractometry. In [ZnCl3(HOxT)] and [HgCl3(HOxT)] the oxythiamine ligand is bound to the metal via N(1') and adopts the V conformation exhibited by thiamine in biological contexts. The infrared (IR) spectrum of [CdCl3(HOxT)] suggests a similar coordination mode. In [CdCl2(OxT)] each OxT zwitterion coordinates to one Cd(II) ion via its N(1') atom and to another via its N(3') and O atoms, giving rise to a polymeric chain along the x-axis. The coordination number of the metal is made up to six by Cdc...Cl interactions, two of which link the polymeric chains in pairs. This seems to be the first metal complex containing the oxythiamine ligand as a zwitterion, with the N(3')-H/O(4'alpha)-H group deprotonated. Neither HOxTCl nor its zinc(II) complex showed any significant activity in vitro against HeLa cells.  相似文献   

19.
Cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes with two new unsymmetrical ligands, isatin salicylaldehyde oxalic acid dihydrazide (isodh) and isatin salicylaldehyde malonic acid dihydrazide (ismdh) were synthesized and characterized by elemental analyses, electrical conductance, magnetic moments, electronic, NMR, ESR and IR spectral studies. The isodh acts as a dibasic tetra dentate ligand bonding through two >C=N-, a deprotonated phenolate and deprotonated indole enolate groups to the metal. The ismdh ligand shows monobasic tetra dentate behaviour in bonding with metal ion through two >C=N-, indole >C=O and a deprotonated phenolate group. The electronic spectral data suggest 4-coordinate square planar geometry for Co(II), Ni(II) and Cu(II) complexes of isodh, whereas, 6-coordinate octahedral structure for the ismdh complexes. The ESR studies also indicate a square planar and distorted octahedral environment around Cu(II) for isodh and ismdh complexes, respectively. Most of the metal complexes show better antifungal activity than the standard and a significant antibacterial activity against various fungi and bacteria.  相似文献   

20.
The interaction of the vanadyl (IV) cation with N-acetyl-D-galactosamine, D-galactosamine, and D-glucuronic acid has been investigated by electron absorption spectroscopy at different mental to ligand ratios and pH values. In the case of D-glucuronic acid, a more detailed study was undertaken, using differential IR spectroscopy in solution. The results show that the cation interacts with the two nitrogenated molecules only at higher pH values, generating 2∶1 lig-and to metal complexes in which coordination occurs through two pairs of deprotonated OH groups of the rings. In the case of D-glucuronic acid, the IR-measurements allowed a wider insight into the structural characteristics of the complexes generated in acidic media. The involvement of the glycosidic oxygen atom in coordination, is suggested at pH=3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号