首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Embryonal chick neural retina cells release into the culture medium a complex of proteins and glycosaminoglycans, termed adherons, that promote cell to substratum adhesion. A monoclonal antibody (C1H3) blocks adheron-mediated cell to substratum adhesion and specifically binds to a 170,000-mol-wt protein present in retinal adherons (Cole, G.J., and L. Glaser, 1984, J. Biol. Chem., 259:4031-4034). The 170,000-mol-wt protein also can be identified in embryonic chick brain and peripheral nervous tissue. In the neural retina, C1H3 also binds to a second antigen with a molecular weight of 140,000 that is absent in the brain. Embryonic brain, therefore, provides a source for the immunopurification of the 170,000-mol-wt protein. Brain adherons also contain the 170,000-mol-wt protein, and cell to substratum adhesion mediated by these adherons is blocked by the C1H3 monoclonal antibody. The 170,000-mol-wt protein in the brain is therefore functionally identical to that in the retina. To demonstrate that adheron-mediated cell to substratum adhesion is caused by cell binding to the 170,000-mol-wt protein, we showed that (a) protease digestion, but not glycosaminoglycan hydrolase digestion of adherons, blocked their ability to bind cells to substratum; (b) the immunopurified 170,000-mol-wt protein blocks adheron-mediated cell to substratum adhesion; and (c) cells can bind to immunopurified 170,000-mol-wt protein bound to glass surfaces.  相似文献   

2.
Embryonic chick neural retina cells in culture release complexes of proteins and glycosaminoglycans, termed adherons, which stimulate cell-substratum adhesion when adsorbed to nonadhesive surfaces. Two distinct retinal cell surface macromolecules, a 170,000-mol-wt glycoprotein and a heparan sulfate proteoglycan; are components of adherons that can independently promote adhesion when coated on inert surfaces. The 170,000-mol-wt polypeptide contains a heparin-binding domain, as indicated by its retention on heparin-agarose columns and its ability to bind [3H]heparin in solution. The attachment of embryonic chick retinal cells to the 170,000-mol-wt protein also depends upon interactions between the protein and the heparan sulfate proteoglycan, since heparan sulfate in solution disrupts adhesion of chick neural retina cells to glass surfaces coated with the 170,000-mol-wt protein. This adhesion is not impaired by chondroitin sulfate or hyaluronic acid, which indicates that inhibition by heparan sulfate is specific. Polyclonal antisera directed against the cell surface heparan sulfate proteoglycan also inhibit attachment of retinal cells to the 170,000-mol-wt protein, which suggests that cell-adheron binding is mediated in part by interactions between cell surface heparan sulfate proteoglycan and 170,000-mol-wt protein contained in the adheron particles. Previous studies have indicated that this type of cell-substratum adhesion is tissue-specific since retina cells do not attach to muscle adherons. Schubert D., M. LaCorbiere, F. G. Klier, and C. Birdwell, 1983, J. Cell Biol. 96:990-998.  相似文献   

3.
Cell-substratum adhesion in the embryonic chicken nervous system has been shown to be mediated in part by a 170,000-mol-wt polypeptide that is a component of adherons. Attachment of retinal cells to the 170,000-mol-wt protein is inhibited by the C1H3 monoclonal antibody and by heparan sulfate (Cole, G. J., D. Schubert, and L. Glaser, 1985, J. Cell Biol., 100:1192-1199). In the present study we have demonstrated that the 170,000-mol-wt C1H3 polypeptide is immunologically identical to the neural cell adhesion molecule N-CAM, and that the 170,000-mol-wt component of N-CAM is preferentially secreted by cells as a component of adherons. We have identified a monoclonal antibody, designated B1A3, that inhibits heparin binding to N-CAM and cell-to-substratum adhesion. A 25,000-mol-wt heparin (heparan sulfate)-binding domain of N-CAM has been identified by limited proteolysis, and this fragment promotes cell attachment when bound to glass surfaces. The fragment also partially inhibits cell binding to adherons when bound to retinal cells, and the B1A3 monoclonal antibody inhibits retinal cell attachment to substrata composed of intact N-CAM or the heparin-binding domain. These data are the first evidence that N-CAM is a multifunctional protein that contains both cell-and heparin (heparan sulfate)-binding domains.  相似文献   

4.
Adherons are high molecular weight glycoprotein complexes which are released into the growth medium of cultured cells. They mediate the adhesive interactions of many cell types, including those of embryonic chick neural retina. The cell surface receptor for chick neural retina adherons has been purified, and shown to be a heparan sulfate proteoglycan (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 100:56-63). This paper describes the isolation and characterization of a protein in neural retina adherons which interacts specifically with the cell surface receptor. The 20,000-mol-wt protein, called retinal purpurin (RP), stimulates neural retina cell-substratum adhesion and prolongs the survival of neural retina cells in culture. The RP protein interacts with heparin and heparan sulfate, but not with other glycosaminoglycans. Monovalent antibodies against RP inhibit RP-cell adhesion as well as adheron-cell interactions. The RP protein is found in neural retina, but not in other tissues such as brain and muscle. These data suggest that RP plays a role in both the survival and adhesive interactions of neural retina cells.  相似文献   

5.
A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 101:1071-1077). Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds [3H]retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approximately 3,000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.  相似文献   

6.
Isolation of a cell-surface receptor for chick neural retina adherons   总被引:13,自引:6,他引:7  
Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion. In solution they increase the rate of cell-cell aggregation. Cell-cell and adheron-cell adhesions of cultured retina cells are selectively inhibited by heparan-sulfate glycosaminoglycan, but not by chondroitin sulfate or hyaluronic acid, suggesting that a heparan-sulfate proteoglycan may be involved in the adhesion process. We isolated a heparan-sulfate proteoglycan from the growth-conditioned medium of neural retina cells, and prepared an antiserum against it. Monovalent Fab' fragments of these antibodies completely inhibited cell-adheron adhesion, and partially blocked spontaneous cell-cell aggregation. An antigenically and structurally similar heparan-sulfate proteoglycan was isolated from the cell surface. This proteoglycan bound directly to adherons, and when absorbed to plastic, stimulated cell-substratum adhesion. These data suggest that a heparan-sulfate proteoglycan on the surface of chick neural retina cells acted as a receptor for adhesion-mediating glycoprotein complexes (adherons).  相似文献   

7.
A role for adherons in neural retina cell adhesion   总被引:18,自引:8,他引:10       下载免费PDF全文
Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion; they also stimulate the rate of cell-cell aggregation. Adheron-stimulated adhesion is tissue specific, and the spontaneous aggregation of neural retina cells is inhibited by monovalent Fab' fragments prepared from an antiserum against neural retina adherons. Therefore cell surface antigenic determinants shared with adherons are involved in normal cell-cell adhesions. The particles from the heterogeneous neural retina population contain many proteins and several glycosaminoglycans. The adherons migrate as a symmetrical 12S peak on sucrose gradients and are predominantly 15-nm spheres when examined by electron microscopy. Finally, the specific activity of neural retina adherons increases from embryonic days 7 through 12 and then declines. These results suggest that glycoprotein particles may be involved in some of the adhesive interactions between neural retina cells and between the cells and their environment.  相似文献   

8.
Previous studies of the adhesive properties of embryonic chick neural retina cells indicate a gradual decrease in the expression of calcium-dependent adhesions during retinal histogenesis, a function which has been attributed in part to gp130/4.8, a retinal calcium-dependent adhesion-associated cell surface membrane glycoprotein with a molecular weight of approximately 130 kDa and an isoelectric point of 4.8 (G. B. Grunwald, R. Pratt, and J. Lilien, 1982, J. Cell Sci. 55, 69-83). The experiments described here were done to define the relationship of gp130/4.8 to N-cadherin, another calcium-dependent adhesion molecule found in chick retina, which has a reported molecular weight of 127 kDa and which is recognized by monoclonal antibody NCD-2 (K. Hatta and M. Takeichi, 1986, Nature (London) 320, 447-449). Using two-dimensional gel electrophoresis followed by Western blotting as well as quantitative solid-phase immunoassays, polyspecific antisera recognizing gp130/4.8 were compared with monoclonal antibody NCD-2 for reactivity with proteins of retina and other tissues. The data lead us to conclude that retinal calcium-dependent adhesion proteins gp130/4.8 and N-cadherin are likely to be the same molecule. In order to obtain evidence for a direct correlation of changes in expression of these adhesion proteins with changes in retinal cell adhesivity and related morphogenetic events, parallel studies were carried out with cells from various ocular tissues to examine the functional, biochemical, and immunohistochemical expression of N-cadherin during ocular development. Immunohistochemical mapping of N-cadherin in the developing chick eye reveals three modes of N-cadherin expression which occur simultaneously in different ocular tissues: (1) down-regulation, (2) up-regulation, and (3) steady-state expression. These patterns of expression correlate with changes in the adhesive behavior of cells as well as with discrete stages in the morphogenesis of several ocular tissues. The results suggest that N-cadherin is a versatile cell adhesion protein with a role in both the development of several ocular tissues and the maintenance of specialized structures in the mature eye.  相似文献   

9.
MY-174 is an IgM class monoclonal antibody originally established against chick PG-M/versican. The antibody specifically stains the photoreceptor layer, where we recently reported an absence of PG-M/versican. In this study, we re-characterized the antibody and identified the molecule that reacts to MY-174 at the photoreceptor layer. Immunohistochemistry localized the antigen to the matrix surrounding photoreceptors. A variety of glycosidase digestions showed that the antigen is the 150-kDa glycoprotein that has sialylated N- and O-linked glycoconjugates having a molecular mass of more than 30-kDa. The peptide sequences obtained from purified MY-174 antigen showed we had sequenced a full-length cDNA with an open reading frame of 2787 base pairs, encoding a polypeptide of 928 amino acids, with 56 and 54% identities to human and mouse sialoprotein associated with cones and rods (SPACRs), respectively, and with the structural features observed in SPACRs. The specific sialylated O-glycoconjugates here are involved in the epitope structure for MY-174. SPACR first appeared by embryonic days 15-16, and expression increased with developmental age, paralleling the adhesion between neural retina and retinal pigment epithelium. Thus, we concluded that the MY-174 antigen at the photoreceptor layer, a developmentally regulated glycoprotein, is identical to chick SPACR and may be involved in a novel system mediating adhesion between neural retina and retinal pigment epithelium.  相似文献   

10.
11.
To identify molecular markers of cell differentiation in developing nervous tissue, monoclonal antibodies against chick embryo neural retina were made. One of them, 3C3mAb, recognized a developmentally regulated antigen present in several organs of the CNS. Data from MALDI-TOF mass spectrometry and peptide sequencing of the immuno-affinity purified protein indicated identity of the antigen with MARCKS. The immunoreactive material was always found as a unique polypeptide (Mr 71 kDa) in SDS-PAGE, however isoelectrofocusing revealed the existence of several bands (pI ranging from 4.0 to 4.5). Interestingly some retinal cell types, as photoreceptors, exhibited an extremely significant decrease in the intensity of the immunoreactive material during the final phases of terminal differentiation while others, as some retinal neurons, maintained the immunoreactivity when fully differentiated. Taken together these results indicate that MARCKS, a protein susceptible of several posttranslational modifications as myristoylation and phosphorylation at variable extent, may act differently in neural retina cell types.  相似文献   

12.
Gicerin is a novel cell adhesion molecule that belongs to the immunoglobulin superfamily. Gicerin protein adheres to neurite outgrowth factor (NOF), an extracellular matrix protein in the laminin family, and also exhibits homophilic adhesion. Heterophilic adhesion of gicerin to NOF is thought to play an active role in neurite outgrowth of developing retinal cells in vitro. In this study, we examined the adhesion activity of gicerin during the retinal development of Japanese quail using an antibody directed against gicerin, to elucidate the biological importance of gicerin in retinal histogenesis. Immunohistochemical and Western blot analysis showed that gicerin was highly expressed in the developing retina but suppressed in the mature retina. The aggregation of neural retinal cells from 5-day embryonic quail retina was significantly inhibited when incubated with a polyclonal antibody to gicerin, suggesting that gicerin protein participates in the adhesion of neural retinal cells of the developing retina. Furthermore, histogenesis of retina both in the organ cultures and in ovo embryos was severely disrupted by incubation with a gicerin antibody. These findings provide evidence that gicerin plays an important role in retinal histogenesis. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 769–780, 1997  相似文献   

13.
By immunofluorescence, mouse monoclonal antibody 18B8 detects developmentally regulated antigens in chick neural retina. In older embryos and in adults these antigens are localized in discrete laminae within the inner and outer synaptic layers. The antibody binds to several gangliosides that undergo both qualitative and quantitative changes during neuronal development (Grunwald, G.B., Fredman, P., Magnani, J.L., Trisler, D., Ginsburg, V., and Nirenberg, M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4008-4012). The simplest of these gangliosides was isolated from lipid extracts of 10-day chick embryonic retinas by DEAE-Sepharose and silicic acid column chromatography. About 300 micrograms was obtained from 9.3 g (wet weight) of retina. The isolated ganglioside was identified as GT3 by enzymatic analysis and by a comparison of its properties with the authentic ganglioside. By immunostaining thin-layer chromatograms with antibody 18B8, GT3 was detected in gangliosides from human neural tissue including cerebellum, optic nerve, and spinal cord, but not in gangliosides from human liver, pancreas, small intestine, adrenals, thyroid, or erythrocytes. GT3 was also found in five of seven human melanoma cell lines.  相似文献   

14.
Gangliosides support neural retina cell adhesion   总被引:10,自引:0,他引:10  
Cell surface carbohydrates and complementary carbohydrate receptors may mediate cell-cell recognition during neuronal development. To model such interactions, we developed a technique to test the ability of cell surface lipids (particularly glycosphingolipids) to mediate specific cell recognition and adhesion (Blackburn, C.C., and Schnaar, R.L. (1983) J. Biol. Chem. 258, 1180-1188). When cells were incubated on plastic microwells adsorbed with various glycolipids, carbohydrate-specific cell adhesion was readily detected. We report here the use of this method to study adhesion of embryonic chick neural retina cells to purified cell surface lipids. Rapid and specific cell adhesion was observed when the neural retina cells were incubated on surfaces adsorbed with gangliosides (an important class of neuronal cell surface glycoconjugates) but not on surfaces adsorbed with various neutral glycosphingolipids, phospholipids, or sulfatide. This suggests that the observed cell adhesion was specific for the carbohydrate moiety of the adsorbed ganglioside and was not due to nonspecific ionic or hydrophobic interactions. Although the surface density of adsorbed lipid required to support cell adhesion was the same for all gangliosides examined, the extent of adhesion varied when different purified gangliosides were used. Ganglioside-specific adhesion was not dependent on the presence of calcium (at 37 degrees C) and was attenuated by pretreatment of the cells with trypsin. The extent of ganglioside-directed neural retinal cell adhesion varied with embryonic age. These results imply that gangliosides may play a role in cell-cell recognition in the developing nervous system.  相似文献   

15.
《The Journal of cell biology》1995,129(5):1391-1401
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N- acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.  相似文献   

16.
In embryonic chick neural retina the carbohydrate-binding proteinligatin has beenshown to interact with peripheral glycoproteinswhose oligosaccharides contain phosphodiester- linked terminalglucose residues. These glycoproteins have been implicated asbeing important to intercellular adhesion since exogenouslyadded ligatin will bind to intact retinal cells and inhibittheir adhesivity. The glycoproteins bearing this modificationhave been partially characterized by incubating retinal cellhomogenates with [ß32P]UDP-glucose andidentifyingthe macromolecular acceptors of phosphodiester-linked glucoseby autoradiography following polyacrylamide gel electrophoresis.It is suggested that this modification could be important fordirecting these glycoproteins intracellularly during their deliveryto the plasma membrane.  相似文献   

17.
Ligatin, a filamentous cell-surface protein purified from embryonic chick neural retina, has been found to inhibit the reassociation of dissociated retinal cells. This inhibition was demonstrated using two methods, a single cell disappearance assay and an improved monolayer collection assay utilizing microtiter plates. Monomeric ligatin at approximately 20 μg/ml inhibited rates of adhesion, but polymeric ligatin and tryptic fragments of ligatin were ineffective. Ligatin's inhibitory effect is suggested to be mediated through binding to retinal cell surfaces since preincubation of dissociated retinal cells with monomeric ligatin inhibited the cells' adhesiveness and removed the inhibitory activity from the culture media. Ligatin homologues prepared from mammalian tissues were ineffective in inhibiting retinal cell adhesion, suggesting a tissue and/or species specificity. Similarities in physicochemical and biological properties suggest that ligatin may be the inhibitor of adhesion previously described by Merrell et al.[Merrell, R., Gottlieb, D. I., and Glaser, L. (1975). J. Biol. Chem., 250, 4825].  相似文献   

18.
Retina cognin does not bind to itself during membrane interaction in vitro   总被引:1,自引:0,他引:1  
Retina cognin (R-cognin) is an intrinsic membrane protein of vertebrate retinal cells which supports tissue-specific cell adhesion and mediates cell type-specific associations during development. As a first step in understanding how R-cognin mediates specific adhesion of retinal cell membranes, we asked if cognin bound to another cognin molecule or to a different macromolecule, a possible cognin-binding protein. To do this, we constructed an affinity column with retinal cell membrane proteins (enriched for cognin) bound to the matrix. Proteins in a detergent extract of retinal cell membranes were exposed to this matrix and those which bound specifically eluted and identified by immunoelectrophoresis. Most prominent among these was a protein with an apparent mass of 64 kDa. The binding of this material to the column was blocked by cognin antibody. To eliminate possible artifacts of molecular interactions in vitro, we sought independent confirmation that 64 kDa protein actually bound R-cognin. Using a modified retina membrane vesicle system, we asked what proteins could be photoaffinity cross-linked to cognin during vesicle aggregation. Cross-linking produced a 114 kDa complex on gels which could be resolved into a 50 kDa (cognin) and a 64 kDa band under reducing conditions. Identification of a 64 kDa protein by independent techniques suggests that cognin promotes association of embryonic chick neural retina cells by binding to this macromolecule or these molecules. Identification of a second component in the mechanism should allow elucidation of cognin's role in mediating cell-cell interactions in developing neural retina.  相似文献   

19.
A monoclonal antibody obtained from mice immunized with a crude neurofilament preparation from newborn rat brain revealed the existence of heterogeneity of the 200,000- and 150,000-dalton neurofilament polypeptides. On immunoblot the monoclonal antibody iC8 reacted with both the 200,000- and 150,000-dalton components in the CNS, but only with the 150,000-dalton polypeptide in sciatic nerve preparations. In addition, the 150,000-dalton polypeptide appeared as a single band in the sciatic nerve, whereas in the CNS a doublet was labeled by iC8. In contrast a second monoclonal antibody (3H5) reacted with the 200,000-dalton peptide and a single 150,000-dalton component in both the central and peripheral nervous system preparations. The differences revealed by iC8 were probably not due to phosphorylation, as the pattern of antibody binding in immunoblots was not changed by pretreatment with alkaline phosphatase. The findings suggest that different isoforms of neurofilament polypeptides are present in the nervous system.  相似文献   

20.
To generate monoclonal antibodies, immunogen fractions were purified from embryonic chick retinae by temperature-induced detergent-phase separation employing Triton X-114. Under reducing conditions, the monoclonal antibody (mAb) 2M6 identifies a protein doublet at 40 and 46 x 10(3) Mr, which appears to form disulfide-coupled multimers. The 2M6 antigen is regulated developmentally during retinal histogenesis and its expression correlates with Müller glial cell differentiation. Isolated glial endfeet and retinal glial cells in vitro were found to be 2M6-positive, identified with the aid of the general glia marker mAb R5. mAb 2M6 does not bind to any other glial cell type in the CNS as judged from immunohistochemical data. Cell-type specificity was further substantiated by employing retinal explant and single cell cultures on laminin in conjunction with two novel neuron-specific monoclonal antibodies. MAb 2M6 does not bind either to neurites or to neuronal cell bodies. Incubation of retinal cells in vitro with bromodeoxyuridine (BrdU) and subsequent immunodouble labelling with mAb 2M6 and anti-BrdU reveal that mitotic Müller cells can also express the 2M6 antigen. To investigate whether Müller cell differentiation depends on interactions with earlier differentiating ganglion cells, transections of early embryonic optic nerves in vivo were performed. This operation eliminates ganglion cells. Müller cell development and 2M6 antigen expression were not affected, suggesting a ganglion-cell-independent differentiation process. If, however, the optic nerve of juvenile chicken was crushed to induce a transient degeneration/regeneration process in the retina, a significant increase of 2M6 immunoreactivity became evident. These data are in line with the hypothesis that Müller glial cells, in contrast to other distinct glial cell types, might facilitate neural regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号