首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary A patient with the phenotype of trisomy 21 (Down syndrome) was found to have a normal karyotype in blood lymphocytes and fibroblasts. Assessment of the chromosome 21 markers SOD1, CBS, ETS2, D21S11, and BCEI showed partial trisomy by duplication of a chromosome segment carrying the SOD1, CBS, and ETS2 loci and flanked by the BCEI and D21S11 loci, which are not duplicated. This submicroscopic duplication at the interface of 21q21 and 21q22.1 reduces to about 2000–3000kb the critical segment the trisomy of which is responsible for the phenotype of trisomy 21.  相似文献   

4.
This report deals with a reciprocal t(10;21) translocation which is observed in three generations of a family. Included are examples of the balanced translocation, adjacent-2 segregation producing three patients with trisomy of the distal long arm of chromosome 21 and the Down syndrome, and 3-1 disjunction producing trisomy of the proximal segment of chromosome 21 in a mildly mentally retarded boy without phenotypic features of the Down syndrome. These data provide evidence that the Down phenotype is attributable to trisomy of the distal long arm of chromosome 21.  相似文献   

5.
6.
The analysis of non-disjunction of chromosome 21 and alphoid DNA variation by using cytogenetic and molecular cytogenetic techniques (quantitative fluorescence in situ hybridization) in 74 nuclear families was performed. The establishment of possible correlation between alphoid DNA variation, parental age, environmental effects, and non-disjunction of chromosome 21 was made. The efficiency of techniques applied was found to be 92% (68 from 74 cases). Maternal non-disjunction wasfound in 58 cases (86%) and paternal non-disjunction - in 7 cases (10%). Post-zygotic mitotic non-disjunction was determined in 2 cases (3%) and one case was associated with Robertsonian translocation 46,XX,der(21;21)(q10;q10), +21. Maternal meiosis I errors were found in 43 cases (64%) and maternal meiosis II errors--in 15 cases (22%). Paternal meiosis I errors occurred in 2 cases (3%) and paternal meiosis I errors--in 5 cases (7%). The lack of the correlation between alphoid DNA variation and non-disjunction of chromosome 21 was established. Sociogenetic analysis revealed the association of intensive drug therapy of infectious diseases during the periconceptual period and maternal meiotic non-disjunction of chromosome 21. The correlation between non-disjunction of chromosome 21 and increased parental age as well as exposure to irradiation, alcohol, tobacco, mutagenic substances was not found. The possible relevance of data obtained to the subsequent studies of chromosome 21 non-disjunction is discussed.  相似文献   

7.
Summary We report the case of an 18-month-old boy with many typical Down syndrome features but a normal cytogenetic analysis. High-resolution banding techniques on lymphocytes and fibroblasts of the propositus and his parents did not show any detectable abnormality including that of trisomy 21 mosaicism. However, CuZn superoxide dismutase (CuZn SOD) in the patient's red cells was increased as in trisomy 21. DNA analysis (Southern blots) using a human CuZn SOD probe showed that the genotype of the propositus contained three CuZn SOD genes. In situ hybridization on metaphase chromosomes with the same probe confirmed the gene location in a segment enclosing the distal part of 21q21 and 21q22.1. There was no significant labeling on other chromosomes of the patient. These results indicate that the Down syndrome phenotype of this patient is due to microduplication of a chromosome 21 fragment containing the CuZn SOD gene.  相似文献   

8.
Z Cetin  S Yakut  E Mihci  AE Manguoglu  S Berker  I Keser  G Luleci 《Gene》2012,507(2):159-164
Pure partial trisomy of chromosome 21 is a rare event. The patients with this aberration are very important for setting up precise karyotype-phenotype correlations particularly in Down syndrome phenotype. We present here a patient with Down syndrome with a de novo derivative chromosome 21. Karyotype of the patient was designated as 46,XY,der(21)(p13)dup(21)(q11.2q21.3)dup(21)(q22.2q22.3) with regard to cytogenetic, FISH and array-CGH analyses. Non-continuous monosomic, disomic and trisomic chromosomal segments through the derivative chromosome 21 were detected by array-CGH analysis. STR analyses revealed maternal origin of the de novo derivative chromosome 21. The dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A) and Down Syndrome Critical Region 1 (DSCR1) genes that are located in Down syndrome critical region, are supposed to be responsible for most of the clinical findings of Down syndrome. However, our patient is the first patient with Down syndrome whose clinical findings were provided in detail, with a de novo derivative chromosome 21 resulting from multiple chromosome breaks excluding DYRK1A and DSCR1 gene regions.  相似文献   

9.
10.
Summary A possible cause of non-disjunction of chromosome 21 in Down Syndromes has been cytogenetically evaluated by examining the parents by Ag-staining technique. In all the cases studied so far, the contributing parents have active ribosomal cistrons on both chromosomes 21 i.e. both chromosomes are stained positively by silver staining. These results show that the active NORs might play an essential role in meiotic non-disjunction. Furthermore, the preliminary results demonstrate that the acrocentric associations of homologous and non-homologous nature involving chromosome 21 are the most frequent in the contributing parent which may further indicate the role of multiple cellular factors affecting the associations in promoting the non-disjunction in addition to active NORs. The possible mechanisms regarding the non-disjunction of chromosome 21 have been described.Presented at the 34th Annual Meeting of the American Society of Human Genetics, Norfolk, VA, USA  相似文献   

11.
Based on a detailed sequence of the distal Down syndrome critical region (DSCR), we predicted and molecularly cloned a novel gene, designated DSCR5. We determined the sequences of expressed sequence tags (ESTs) that almost matched the predicted cDNA sequence of DSCR5. Northern blot analysis showed that DSCR5 is expressed in several tissues including the liver, skeletal muscle, heart, pancreas and testis. To determine the 5'-end of DSCR5, the oligo-capping method was employed. Combining the EST sequence data and that from the oligo-capping experiments, we obtained the full-length cDNA sequence of DSCR5. DSCR5 had at least four types of alternatively spliced variants. According to the number of exons, they could be classified into two subtypes: DSCR5alpha and DSCR5beta. DSCR5alpha includes three splice variant subtypes, DSCR5alpha1, alpha2 and alpha3, which each has different first non-coding exon. In addition, the most abundantly isolated form, DSCR5alpha1, shows microheterogeneity of the mRNA start site. Comparison of the sequences between the predicted cDNA and the molecularly cloned cDNA revealed that the computer programs had limited validity to correctly predict the terminal exons. Thus, molecular cloning should always be required to complement the inadequacy of the computer predictions.  相似文献   

12.
Down syndrome (DS) is caused by trisomy for human chromosome 21 and is the most common genetic cause of mental retardation. The distal 10 Mb region of the long arm of the chromosome has been proposed to be associated with many of the abnormalities seen in DS. This region is often referred to as the Down syndrome critical region (DSCR). We report here the results of our analyses of the DSCR protein 2 (DSCR2). Results from transiently transfected COS-1 and HEK293 cells suggest that DSCR2 is synthesized as a 43 kDa precursor protein, from which the N-terminus is cleaved resulting in a polypeptide of 41 kDa. The polypeptide is modified by still uncharacterized co- or post-translational modifications increasing the predicted molecular weight of 32.8 kDa by about 10 kDa. Analyses of the only putative N-glycosylation site by in vitro mutagenesis excluded the possibility of the contribution of N-glycosylation to this increase in molecular weight. Further, the results of intracellular localization studies and membrane fractionation assays indicate that DSCR2 is targeted to a cytoplasmic compartment as a soluble form.  相似文献   

13.
The Langer-Giedion syndrome (LGS), which is characterized by craniofacial dysmorphism and skeletal abnormalities, is caused by a genetic defect in 8q24.1. We have used 13 anonymous DNA markers from an 8q24.1-specific microdissection library, as well as c-myc and thyroglobulin gene probes, to map the deletion breakpoints in 16 patients with LGS. Twelve patients had a cytogenetically visible deletion, two patients had an apparently balanced translocation, and two patients had an apparently normal karyotype. In all cases except one translocation patient, loss of genetic material was detected. The DNA markers fall into 10 deletion intervals. Clone L48 (D8S51) defines the shortest region of deletion overlap (SRO), which is estimated to be less than 2 Mbp. Three clones--p17-2.3 EE (D8S43), L24 (D8S45), and L40 (D8S49) - which flank the SRO recognize evolutionarily conserved sequences.  相似文献   

14.
Derivation of a formula for determination of proportion of paternal trisomy 21 is presented. The formula can be applied for the literature data on sex ratio in the cases of paternal and maternal origin of the extra chromosome in the populations where direct studies of its origin can not be performed.  相似文献   

15.
Gardiner K  Davisson M 《Genome biology》2000,1(2):reviews000-9
The recent completion of the DNA sequence of human chromosome 21 has provided the first look at the 225 genes that are candidates for involvement in Down syndrome (trisomy 21). A broad functional classification of these genes, their expression data and evolutionary conservation, and comparison with the gene content of the major mouse models of Down syndrome, suggest how the chromosome sequence may help in understanding the complex Down syndrome phenotype.  相似文献   

16.
By combining molecular and cytogenetic techniques, we demonstrated the feasibility and desirability of a comprehensive approach to analysis of nondisjunction for chromosome 21. We analyzed the parental origin and stage of meiotic errors resulting in trisomy 21 in each of five families by successfully using cytogenetic heteromorphisms and DNA polymorphisms. The 16 DNA fragments used to detect polymorphisms spanned the length of the long arm and detected recombinational events on nondisjoined chromosomes in both maternal meiosis I and maternal meiosis II errors. The meiotic stage at which errors occurred was determined by sandwiching the centromere between cytogenetic heteromorphisms on 21p and an informative haplotype constructed using two polymorphic DNA probes that map to 21q just below the centromere. This study illustrates the necessity of combining cytogenetic polymorphisms on 21p with DNA polymorphisms spanning 21q to determine (1) the source and stage of meiotic errors that lead to trisomy 21 and (2) whether an association exists between nondisjunction and meiotic recombination.  相似文献   

17.
A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2-39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes.  相似文献   

18.
Down syndrome (DS), also known as Trisomy 21, is the most common chromosome aneuploidy in live-born children and displays a complicated symptom. To date, several kinds of mouse models have been generated to understand the molecular pathology of DS, yet the gene dosage effects and gene(s)-phenotype(s) correlation are not well understood. In this study, we established a novel method to generate a partial trisomy mice using the mouse ES cells that harbor a single copy of human artificial chromosome (HAC), into which a small human DNA segment containing human chromosome 21 genes cloned in a bacterial artificial chromosome (BAC) was recombined. The produced mice were found to maintain the HAC carrying human genes as a mini-chromosome, hence termed as a Trans-Mini-Chromosomal (TMC) mouse, and HAC was transmitted for more than twenty generations independent from endogenous mouse chromosomes. The three human transgenes including cystathionine β-synthase, U2 auxiliary factor and crystalline alpha A were expressed in several mouse tissues with various expression levels relative to mouse endogenous genes. The novel system is applicable to any of human and/or mouse BAC clones. Thus, the TMC mouse carrying a HAC with a limited number of genes would provide a novel tool for studying gene dosage effects involved in the DS molecular pathogenesis and the gene(s)-phenotype(s) correlation.  相似文献   

19.
Three Down syndrome patients for whom karyotypic analysis showed a "mirror" (reverse tandem) duplication of chromosome 21 were studied by phenotypic, cytogenetic, and molecular methods. On high-resolution R-banding analysis performed in two cases, the size of the fusion 21q22.3 band was apparently less than twice the size of the normal 21q22.3, suggesting a partial deletion of distal 21q. The evaluation of eight chromosome 21 single-copy sequences of the 21q22 region--namely, SOD1, D21S15, D21S42, CRYA1, PFKL, CD18, COL6A1, and S100B--by a slot blot method showed in all three cases a partial deletion of 21q22.3 and partial monosomy. The translocation breakpoints were different in each patient, and in two cases the rearranged chromosome was found to be asymmetrical. The molecular definition of the monosomy 21 in each patient was, respectively, COL6A1-S100B, CD18-S100B, and PFKL-S100B. DNA polymorphism analysis indicated in all cases a homozygosity of the duplicated material. The duplicated region was maternal in two patients and paternal in one patient. These data suggest that the reverse tandem chromosomes did not result from a telomeric fusion between chromosomes 21 but from a translocation between sister chromatids. The phenotypes of these patients did not differ significantly from that of individuals with full trisomy 21, except in one case with large ears with an unfolded helix. The fact that monosomy of distal 21q22.3 in these patients resulted in a phenotype very similar to Down syndrome suggests that the duplication of the genes located in this part of chromosome 21 is not necessary for the pathogenesis of the Down syndrome features observed in these patients, including most of the facial and hand features, muscular hypotonia, cardiopathy of the Fallot tetralogy type, and part of the mental retardation.  相似文献   

20.
Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical facial dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13 and Y2, of D4S113. To delineate this 4p deletion, we performed a series of FISH and pulsed-field gel electrophoresis analyses by using probes from 4p16.3. A deletion of approximately 2.5 Mb with the breakpoint at approximately 80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, we have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to approximately 2 Mb between D4S43 and D4S142.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号