共查询到20条相似文献,搜索用时 0 毫秒
1.
A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals 总被引:6,自引:0,他引:6
Hemoglobin, myoglobin, neuroglobin, and cytoglobin are four types of vertebrate globins with distinct tissue distributions and functions. Here, we report the identification of a fifth and novel globin gene from fish and amphibians, which has apparently been lost in the evolution of higher vertebrates (Amniota). Because its function is presently unknown, we tentatively call it globin X (GbX). Globin X sequences were obtained from three fish species, the zebrafish Danio rerio, the goldfish Carassius auratus, and the pufferfish Tetraodon nigroviridis, and the clawed frog Silurana tropicalis. Globin X sequences are distinct from vertebrate hemoglobins, myoglobins, neuroglobins, and cytoglobins. Globin X displays the highest identity scores with neuroglobin (approximately 26% to 35%), although it is not a neuronal protein, as revealed by RT-PCR experiments on goldfish RNA from various tissues. The distal ligand-binding and the proximal heme-binding histidines (E7 and F8), as well as the conserved phenylalanine CD1 are present in the globin X sequences, but because of extensions at the N-terminal and C-terminal, the globin X proteins are longer than the typical eight alpha-helical globins and comprise about 200 amino acids. In addition to the conserved globin introns at helix positions B12.2 and G7.0, the globin X genes contain two introns in E10.2 and H10.0. The intron in E10.2 is shifted by 1 bp in respect to the vertebrate neuroglobin gene (E11.0), providing possible evidence for an intron sliding event. Phylogenetic analyses confirm an ancient evolutionary relationship of globin X with neuroglobin and suggest the existence of two distinct globin types in the last common ancestor of Protostomia and Deuterostomia. 相似文献
2.
Paralogy and orthology in the MALVACEAE rpb2 gene family: investigation of gene duplication in hibiscus 总被引:1,自引:0,他引:1
A sample of the second largest subunit of low-copy nuclear RNA polymerase II (rpb2) sequences from Malvaceae subfamily Malvoideae suggests that rpb2 has been duplicated early in the subfamily's history. Hibiscus and related taxa possess two rpb2 genes, both of which produce congruent phylogenetic patterns that are largely concordant with cpDNA topologies. No evidence of functional divergence or disruption was found among duplicated copies, suggesting that long-term maintenance of duplicated copies of rpb2 is usual in this lineage. Therefore, this gene may be suitable for the potential diagnosis of relatively old polyploid events. One probable pseudogene was found in Radyera farragei and a single chimeric sequence was recovered from Howittia trilocularis, suggesting that the rpb2 locus is not as prone to evolutionary processes that can confound phylogenetic inferences based on nDNA sequences. The pattern of relationships among rpb2 sequences, coupled with chromosome number information and Southern hybridization data, suggests that an early polyploid event was not the cause of the duplication, despite independent evidence of paleopolyploidy in some members of Malvoideae. Rpb2 exons and introns together are suitable for phylogenetic analysis, producing well-resolved and well-supported results that were robust to model permutation and congruent with previous studies of subfamily Malvoideae using cpDNA characters. 相似文献
3.
Gene duplication and evolutionary novelty in plants 总被引:3,自引:0,他引:3
Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome. 相似文献
4.
Phylogeny reconstructions of the globin gene families have revealed that paralogous genes within species are often more similar to one another than they are to their orthologous counterparts in closely related species. This pattern has been previously attributed to mechanisms of concerted evolution such as interparalog gene conversion that homogenize sequence variation between tandemly duplicated genes and therefore create the appearance of recent common ancestry. Here we report a comparative genomic analysis of the alpha-globin gene family in mammals that reveal a surprisingly high rate of lineage-specific gene duplication and deletion via unequal crossing-over. Results of our analysis reveal that patterns of sequence similarity between paralogous alpha-like globin genes from the same species are only partly explained by concerted evolution between preexisting gene duplicates. In a number of cases, sequence similarity between paralogous sequences from the same species is attributable to recent ancestry between the products of de novo gene duplications. As a result of this surprisingly rapid rate of gene gain and loss, many mammals possess alpha-like globin genes that have no orthologous counterparts in closely related species. The resultant variation in gene copy number among species may represent an important source of regulatory variation that affects physiologically important aspects of blood oxygen transport and aerobic energy metabolism. 相似文献
5.
Gene duplication is considered a major force in gene family expansion and gene innovation. As gene copies assume novel functions, they must avoid periods of neutrality or be deleted from the genome. Current opinions state that copies avoid neutrality through gene dosage effects. These copies are therefore selected from an early stage. This study concentrates on the flow of copies from recent duplication to gene innovation. We have studied 21 microbial genomes using amino acid divergence to describe paralog evolution in the long-term perspective. Five of these were studied in closer detail using nucleotide divergence for a shorter perspective. It was found that rates of duplication and deletion are high, with only a small fraction of duplications retained and apparently selected. This leads to a steady accumulation of paralogs, which seems to be of a similar magnitude in most of the genomes. Furthermore, it is found that genes of high expression level, as measured by their codon bias, are strongly underrepresented among the most recent duplications. Based on these and other observations, it is suggested that gene innovation is driven by amplification of weak, ancillary functions rather than strong, established functions. 相似文献
6.
The evolutionary history of quorum-sensing systems in bacteria 总被引:3,自引:0,他引:3
Communication among bacterial cells through quorum-sensing (QS) systems is used to regulate ecologically and medically important traits, including virulence to hosts. QS is widespread in bacteria; it has been demonstrated experimentally in diverse phylogenetic groups, and homologs to the implicated genes have been discovered in a large proportion of sequenced bacterial genomes. The widespread distribution of the underlying gene families (LuxI/R and LuxS) raises the questions of how often QS genes have been transferred among bacterial lineages and the extent to which genes in the same QS system exchange partners or coevolve. Phylogenetic analyses of the relevant gene families show that the genes annotated as LuxI/R inducer and receptor elements comprise two families with virtually no homology between them and with one family restricted to the gamma-Proteobacteria and the other more widely distributed. Within bacterial phyla, trees for the LuxS and the two LuxI/R families show broad agreement with the ribosomal RNA tree, suggesting that these systems have been continually present during the evolution of groups such as the Proteobacteria and the Firmicutes. However, lateral transfer can be inferred for some genes (e.g., from Firmicutes to some distantly related lineages for LuxS). In general, the inducer/receptor elements in the LuxI/R systems have evolved together with little exchange of partners, although loss or replacement of partners has occurred in several lineages of gamma-Proteobacteria, the group for which sampling is most intensive in current databases. For instance, in Pseudomonas aeruginosa, a transferred QS system has been incorporated into the pathway of a native one. Gene phylogenies for the main LuxI/R family in Pseudomonas species imply a complex history of lateral transfer, ancestral duplication, and gene loss within the genus. 相似文献
7.
The widely popular hypothesis that there were two rounds of genome duplication by polyploidization early in vertebrate history (the 2R hypothesis) has been difficult to test until recently. Among the lines of evidence adduced in support of this hypothesis are relative genome size, relative gene number, and the existence of genomic regions putatively duplicated during polyploidization. The availability of sequence for a substantial portion of the human genome makes possible the first rigorous tests of this hypothesis. Comparison of gene family size in the human genome and in invertebrate genomes shows no evidence of a 4:1 ratio between vertebrates and invertebrates. Furthermore, explicit phylogenetic tests for the topology expected from two rounds of polyploidization have revealed alternative topologies in a substantial majority of human gene families. Likewise, phylogenetic analyses have shown that putatively duplicated genomic regions often include genes duplicated at widely different times over the evolution of life. The 2R hypothesis thus can be decisively rejected. Rather, current evidence favors a model of genome evolution in which tandem duplication, whether of genomic segments or of individual genes, predominates. 相似文献
8.
Juan C. Opazo Shigehiro Kuraku Kattina Zavala Jessica Toloza‐Villalobos Federico G. Hoffmann 《Evolution & development》2019,21(4):205-217
Nodal is a signaling molecule that belongs to the transforming growth factor‐β superfamily that plays key roles during the early stages of development of animals. In vertebrates Nodal forms an heterodimer with a GDF1/3 protein to activate the Nodal pathway. Vertebrates have a paralog of nodal in their genomes labeled Nodal‐related, but the evolutionary history of these genes is a matter of debate, mainly because of the presence of a variable numbers of genes in the vertebrate genomes sequenced so far. Thus, the goal of this study was to investigate the evolutionary history of the Nodal and Nodal‐related genes with an emphasis in tracking changes in the number of genes among vertebrates. Our results show the presence of two gene lineages (Nodal and Nodal‐related) that can be traced back to the ancestor of jawed vertebrates. These lineages have undergone processes of differential retention and lineage‐specific expansions. Our results imply that Nodal and Nodal‐related duplicated at the latest in the ancestor of gnathostomes, and they still retain a significant level of functional redundancy. By comparing the evolution of the Nodal/Nodal‐related with GDF1/3 gene family, it is possible to infer that there are several types of heterodimers that can trigger the Nodal pathway among vertebrates. 相似文献
9.
Lawrence K. Duffy Margaret M. Ehrhardt John Buettner-Janusch Dorian H. Coppenhaver 《American journal of primatology》1987,13(2):187-193
The ring-tailed lemur, Lemur catta, shows a two-component hemoglobin phenotype after alkaline electrophoresis. A difference in the amino acid sequence of the isolated α-globins was observed at position 15 (α I-Gly, α II-Lys) and can account for the electrophoretic pattern of two hemoglobin components. Only one other amino acid difference was found in the sequence of the two globin chains: a neutral substitution occurs at position 53 (α I-Gly, α II-Ala). The complete primary structures of the duplicated α-globin chains of Lemur catta are presented. 相似文献
10.
Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth 总被引:6,自引:0,他引:6
Kong H Landherr LL Frohlich MW Leebens-Mack J Ma H dePamphilis CW 《The Plant journal : for cell and molecular biology》2007,50(5):873-885
Gene duplication plays important roles in organismal evolution, because duplicate genes provide raw materials for the evolution of mechanisms controlling physiological and/or morphological novelties. Gene duplication can occur via several mechanisms, including segmental duplication, tandem duplication and retroposition. Although segmental and tandem duplications have been found to be important for the expansion of a number of multigene families, the contribution of retroposition is not clear. Here we show that plant SKP1 genes have evolved by multiple duplication events from a single ancestral copy in the most recent common ancestor (MRCA) of eudicots and monocots, resulting in 19 ASK (Arabidopsis SKP1-like) and 28 OSK (Oryza SKP1-like) genes. The estimated birth rates are more than ten times the average rate of gene duplication, and are even higher than that of other rapidly duplicating plant genes, such as type I MADS box genes, R genes, and genes encoding receptor-like kinases. Further analyses suggest that a relatively large proportion of the duplication events may be explained by tandem duplication, but few, if any, are likely to be due to segmental duplication. In addition, by mapping the gain/loss of a specific intron on gene phylogenies, and by searching for the features that characterize retrogenes/retrosequences, we show that retroposition is an important mechanism for expansion of the plant SKP1 gene family. Specifically, we propose that two and three ancient retroposition events occurred in lineages leading to Arabidopsis and rice, respectively, followed by repeated tandem duplications and chromosome rearrangements. Our study represents a thorough investigation showing that retroposition can play an important role in the evolution of a plant gene family whose members do not encode mobile elements. 相似文献
11.
The temporal distribution of gene duplication events in a set of highly conserved human gene families 总被引:13,自引:0,他引:13
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year. 相似文献
12.
13.
Yoshihito Niimura Mai Tsunoda Sari Kato Ken Murata Taichi Yanagawa Shunta Suzuki Kazushige Touhara 《Molecular biology and evolution》2021,38(2):634
The exocrine-gland secreting peptide (ESP)gene family encodes proteinaceous pheromones that are recognized by the vomeronasal organ in mice. For example, ESP1 is a male pheromone secreted in tear fluid that regulates socio-sexual behavior, and ESP22 is a juvenile pheromone that suppresses adult sexual behavior. The family consists of multiple genes and has been identified only in mouse and rat genomes. The coding region of a mouse ESP gene is separated into two exons, each encoding signal and mature sequences. Here, we report the origin and evolution of the ESP gene family. ESP genes were found only in the Muridea and Cricetidae families of rodents, suggesting a recent origin of ESP genes in the common ancestor of murids and cricetids. ESP genes show a great diversity in number, length, and sequence among different species as well as mouse strains. Some ESPs in rats and golden hamsters are expressed in the lacrimal gland and the salivary gland. We also found that a mature sequence of an ESP gene showed overall sequence similarity to the α-globin gene. The ancestral ESP gene seems to be generated by recombination of a retrotransposed α-globin gene with the signal-encoding exon of the CRISP2 gene located adjacent to the ESP gene cluster. This study provides an intriguing example of molecular tinkering in rapidly evolving species-specific proteinaceous pheromone genes. 相似文献
14.
Kouichi Maruyama Shigeki Yasumasu and Ichiro Iuchi 《Development, growth & differentiation》1999,41(5):589-599
When fractionated by reverse-phase high performance liquid chromatography (HPLC), the embryonic hemoglobin of the rainbow trout, Oncorhynchus mykiss, consisted of eight globins different from adult globins in terms of retention time. Amino acid sequences of the N-terminal regions of some globins were determined. In addition, four cDNA clones for embryonic globins from 10-day embryos were isolated (at 15 degrees C), sequenced and the amino acid sequences predicted. In comparison with the sequences of previously characterized globins, they corresponded to two alpha-type and two beta-type globins and therefore were named em.alpha-1, em.alpha-2, em.beta-1 and em.beta-2. The N-terminal 36 amino acids of one (E2) of the embryonic globins isolated by HPLC were identical to those of the sequence deduced from a cDNA, em.beta-2. The phylogenetic relationship between the embryonic globins and other globins previously reported was discussed. The present study is the first demonstration of amino acid sequences of embryonic globins in a teleost. To understand the initiation of erythropoiesis in the early development of the rainbow trout, histochemistry using o-dianisidine/hydrogen peroxide, immunohistochemistry using an antibody against embryonic hemoglobin, and northern blotting and whole embryo in situ hybridization using antisense RNA probe for em.beta-2 were performed. Embryonic globin mRNA, globin and hemoglobin appeared first in the anterior part of the intermediate cell mass (ICM) located in the median line beneath the notochord of embryos 6-7 days after fertilization at 15 degrees C (Vernier's stages 16-20). Shortly after that, the expression signal extended to the posterior part of the ICM and spread out laterally to blood islands on the posterior yolk sac. Thus, the initiation of erythropoiesis in the early embryo of rainbow trout is intraembryonic. 相似文献
15.
Johnston CR O'Dushlaine C Fitzpatrick DA Edwards RJ Shields DC 《Molecular biology and evolution》2007,24(1):315-323
Gene duplication and loss are predicted to be at least of the order of the substitution rate and are key contributors to the development of novel gene function and overall genome evolution. Although it has been established that proteins evolve more rapidly after gene duplication, we were interested in testing to what extent this reflects causation or association. Therefore, we investigated the rate of evolution prior to gene duplication in chordates. Two patterns emerged; firstly, branches, which are both preceded by a duplication and followed by a duplication, display an elevated rate of amino acid replacement. This is reflected in the ratio of nonsynonymous to synonymous substitution (mean nonsynonymous to synonymous nucleotide substitution rate ratio [Ka:Ks]) of 0.44 compared with branches preceded by and followed by a speciation (mean Ka:Ks of 0.23). The observed patterns suggest that there can be simultaneous alteration in the selection pressures on both gene duplication and amino acid replacement, which may be consistent with co-occurring increases in positive selection, or alternatively with concurrent relaxation of purifying selection. The pattern is largely, but perhaps not completely, explained by the existence of certain families that have elevated rates of both gene duplication and amino acid replacement. Secondly, we observed accelerated amino acid replacement prior to duplication (mean Ka:Ks for postspeciation preduplication branches was 0.27). In some cases, this could reflect adaptive changes in protein function precipitating a gene duplication event. In conclusion, the circumstances surrounding the birth of new proteins may frequently involve a simultaneous change in selection pressures on both gene-copy number and amino acid replacement. More precise modeling of the relative importance of preduplication, postduplication, and simultaneous amino acid replacement will require larger and denser genomic data sets from multiple species, allowing simultaneous estimation of lineage-specific fluctuations in mutation rates and adaptive constraints. 相似文献
16.
The rapid evolution of fertilization proteins has generated remarkable diversity in molecular structure and function. Glycoproteins of vertebrate egg coats contain multiple zona pellucida (ZP)-N domains (1–6 copies) that facilitate multiple reproductive functions, including species-specific sperm recognition. In this report, we integrate phylogenetics and machine learning to investigate how ZP-N domains diversify in structure and function. The most C-terminal ZP-N domain of each paralog is associated with another domain type (ZP-C), which together form a “ZP module.” All modular ZP-N domains are phylogenetically distinct from nonmodular or free ZP-N domains. Machine learning–based classification identifies eight residues that form a stabilizing network in modular ZP-N domains that is absent in free domains. Positive selection is identified in some free ZP-N domains. Our findings support that strong purifying selection has conserved an essential structural core in modular ZP-N domains, with the relaxation of this structural constraint allowing free N-terminal domains to functionally diversify. 相似文献
17.
Elsbeth L. Walker N. F. Weeden Crispin B. Taylor Pamela Green Gloria M. Coruzzi 《Plant molecular biology》1995,29(6):1111-1125
Here, we describe two nearly identical expressed genes for cytosolic glutamine synthetase (GS3A and GS3B) in Pisum sativum L. RFLP mapping data indicates that the GS3A and GS3B genes are separate loci located on different chromosomes. DNA sequencing of the GS3A and GS3B genes revealed that the coding regions are 99% identical with only simple nucleotide substitutions resulting in three amino acid differences. Surprisingly, the non-coding regions (5 non-coding leader, the 11 introns, and 3 non-coding tail) all showed a high degree of identity (96%). In these non-coding regions, 25% of the observed differences between the GS3A and GS3B genes were deletions or duplications. The single difference in the 3 non-coding regions of the GS3A and GS3B genes was a 25 bp duplication of an AU-rich element in the GS3B gene. As the GS3B mRNA accumulates to lower levels than the GS3A gene, we tested whether this sequence which resembles an mRNA instability determinant functioned as such in the context of the GS mRNA. Using the GS3B 3 tail as part of a chimeric gene in transgenic plants, we showed that this AU-rich sequence has little effect on transgene mRNA levels. To determine whether the GS3A/GS3B genes represent a recent duplication, we examined GS3-like genes in genomic DNA of ancient relatives of P. sativum. We observed that several members of the Viceae each contain two genomic DNA fragments homologous to the GS3B gene, suggesting that this is an ancient duplication event. Gene conversion has been invoked as a possible mechanism for maintaining the high level of nucleotide similarity found between the GS3A and GS3B genes. Possible evolutionary reasons for the maintenance of these twin GS genes in pea, and the general duplication of genes for cytosolic GS in all plant species are discussed. 相似文献
18.
Jeffery P. Demuth Matthew W. Hahn 《BioEssays : news and reviews in molecular, cellular and developmental biology》2009,31(1):29-39
One of the unique insights provided by the growing number of fully sequenced genomes is the pervasiveness of gene duplication and gene loss. Indeed, several metrics now suggest that rates of gene birth and death per gene are only 10–40% lower than nucleotide substitutions per site, and that per nucleotide, the consequent lineage‐specific expansion and contraction of gene families may play at least as large a role in adaptation as changes in orthologous sequences. While gene family evolution is pervasive, it may be especially important in our own evolution since it appears that the “revolving door” of gene duplication and loss has undergone multiple accelerations in the lineage leading to humans. In this paper, we review current understanding of gene family evolution including: methods for inferring copy number change, evidence for adaptive expansion and adaptive contraction of gene families, the origins of new families and deaths of previously established ones, and finally we conclude with a perspective on challenges and promising directions for future research. 相似文献
19.
Members of the family of intracellular lipid binding proteins (iLBPs) have been implicated in cytoplasmic transport of lipophilic ligands, such as long-chain fatty acids and retinoids. iLBPs are low molecular mass proteins (14–16 kDa) sharing a common structural fold. The iLBP family likely arose through duplication and diversification of an ancestral iLBP gene. Phylogenetic analysis undertaken in the present study indicates that the ancestral iLBP gene arose after divergence of animals from fungi and plants. The first gene duplication was dated around 930 millions of years ago, and subsequent duplications in the succeeding 550 millions of years gave rise to the 16 iLBP types currently recognized in vertebrates. Four clusters of proteins, each binding a characteristic range of ligands, are evident from the phylogenetic tree. Evolution of different binding properties probably allowed cytoplasmic trafficking of distinct ligands. It is speculated that recruitment of an iLBP during evolution of animals enabled the mitochondrial oxidation of long-chain fatty acids. 相似文献
20.
The role of duplication in the expression of a variable surface glycoprotein gene of Trypanosoma brucei 总被引:1,自引:0,他引:1
The variable surface glycoprotein (VSG) genes of Trypanosoma brucei have been classified into two groups depending upon whether or not duplication of the genes is observed when they are expressed. We report here the observation of duplication apparently linked to expression of the ILTaT 1.3 gene in the ETaR 1 trypanosome stock. In the ILTaR 1 stock, expression of the ILTaT 1.3 VSG did not involve a new duplication, but instead activation of a preexisting gene copy that had been apparently generated earlier by a duplication event analogous to that directly observed in the ETaR 1 trypanosomes. The results suggest that the well-characterised gene duplications found with other VSG genes are common to all VSG genes but are not directly responsible for controlling expression. All currently available data can be accommodated by a model that assumes that gene duplication and replacement occurs independently of antigenic switching. 相似文献