首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the number of histidine residues available for chemical modification with the specific reagent diethylpyrocarbonate in both bovine and goat -crystallins. Results indicate that there are two distinctly different classes of histidine residues in the native protein. Out of 300 total histidine residues in the protein (on the basis of 800-kDa protein molecular weight) about 170±2 residues have been found to be modified by the reagent. The remaining 130±2 residues are modified when the protein is partially denatured in 1.5 M guanidine hydrochloride. The H+-titration behavior of the histidine residues in the protein corroborates this result. The observed differential accessibility of histidine residues may be important in maintaining the surface hydrophobicity of the aggregate as well as in stabilizing its quaternary structure.  相似文献   

2.
The review is devoted to tritium planigraphy and its applications in solving a broad scope of problems in modern molecular and physicochemical biology. The method is based on nonselective substitution of tritium for hydrogen in the hydrocarbon parts of target molecules. It furnishes information on the steric accessibility of the components of a system under study (macromolecule within a complex amino acid residues, and even separate atomic groupings in a macromolecule) that characterizes the structure of the entire object. The technique is applicable to specimens in different phase states and has no limitations in respect of the target molecular mass. Tritium planigraphy is especially important in the cases when the biological macromolecules cannot be examined by the conventional methods (X-ray analysis and NMR spectroscopy). The review summarizes the studies of protein accessible surface and spatial arrangement, and outlines the approaches to modeling the protein 3D structure and probing into the spatial organization of theEscherichia coli ribosome and virus particles.  相似文献   

3.
Two -galactosidase fusion proteins, VP1LAC and LACVP1, contain the same viral capsid protein fused to either the amino or carboxy termini of the enzyme, respectively. Once produced in Escherichia coli, these fusions undergo a rapid, site-limited proteolysis releasing active -galactosidase fragments indistinguishable from the native enzyme. In vivo binding preferences of DnaK and GroEL chaperones for these homologous protein fragments have been observed, indicating that accessibility of chaperone target sites in degradation products could be determined by the folding pathway undergone by the larger polypeptide before the proteolytic attack.  相似文献   

4.
5.
A full-length mosquito dopachrome conversion enzyme (DCE) and its truncated form lacking the last 54 carboxyl-terminal amino acid residues are expressed using a baculovirus/insect cell expression system. The full-length recombinant DCE displayed multiple bands during native PAGE with substrate staining, but only one active band was detected when the truncated recombinant DCE was analyzed under identical analysis conditions. Our data suggest that the last 50 some carboxyl-terminal residues are involved in the polymerization of the DCE molecules and that the proposed DCE isozymes likely reflect the presence of multimers of the same DCE molecules. The significance of the recombinant DCE in accelerating the melanization pathway is demonstrated by a rapid production of melanin in a dopa and tyrosinase reaction mixture in the presence of recombinant DCE. The DCE sequence data obtained in our previous study, together with results of functional expression and biochemical characterization achieved in this study, provide a necessary reference for the study of other insect DCEs.  相似文献   

6.
The effect of amino acid residues modification of Desulfovibrio gigas hydrogenase on different activity assays is reported. The first method consisted in the modification of glutamic and aspartic acid residues of the enzyme with ethylenediamine in order to change the polarity of certain regions of the protein surface. The second method consisted in the modification of histidine residues with a Ru complex in order to change the acid-base properties of the histidine residues. The implication of these modifications in the enzyme kinetics has been studied by measuring in parallel the activities of para/ortho hydrogen conversion, deuterium/hydrogen exchange and dyes reduction with hydrogen. Our experimental data support some hypothesis based on the three-dimensional structure of this enzyme: (a) electrostactic interactions between the hydrogenase and the redox partner play an essential role in the kinetics; (b) the histidine ligand and the surrounding acidic residues of the distal [4Fe4S] cluster form the recognition site of the redox partner of the hydrogenase; and (c) histidine residues are involved in the hydron transfer pathway of the hydrogenase.  相似文献   

7.
Faridmoayer A  Scaman CH 《Glycobiology》2005,15(12):1341-1348
Alpha-glucosidase I initiates the trimming of newly assembled N-linked glycoproteins in the lumen of the endoplasmic reticulum (ER). Site-specific chemical modification of the soluble alpha-glucosidase I from yeast using diethylpyrocarbonate (DEPC) and tetranitromethane (TNM) revealed that histidine and tyrosine are involved in the catalytic activity of the enzyme, as these residues could be protected from modification using the inhibitor deoxynojirimycin. Deoxynojirimycin could not prevent inactivation of enzyme treated with N-bromosuccinimide (NBS) used to modify tryptophan residues. Therefore, the binding mechanism of yeast enzyme contains different amino acid residues compared to its mammalian counterpart. Catalytically active polypeptides were isolated from endogenous proteolysis and controlled trypsin hydrolysis of the enzyme. A 37-kDa nonglycosylated polypeptide was isolated as the smallest active fragment from both digests, using affinity chromatography with inhibitor-based resins (N-methyl-N-59-carboxypentyl- and N-59-carboxypentyl-deoxynojirimycin). N-terminal sequencing confirmed that the catalytic domain of the enzyme is located at the C-terminus. The hydrolysis sites were between Arg(521) and Thr(522) for endogenous proteolysis and residues Lys(524) and Phe(525) for the trypsin-generated peptide. This 37-kDa polypeptide is 1.9 times more active than the 98-kDa protein when assayed with the synthetic trisaccharide, alpha-D-Glc1,2alpha-D-Glc1,3alpha-D-Glc-O(CH2)(8)COOCH(3), and is not glycosylated. Identification of this relatively small fragment with catalytic activity will allow mechanistic studies to focus on this critical region and raises interesting questions about the relationship between the catalytic region and the remaining polypeptide.  相似文献   

8.
Adsorption and bioelectrocatalytic activity of native horseradish peroxidase (HRP) and its recombinant forms on polycrystalline gold electrodes were studied. Recombinant forms of HRP were produced by a genetic engineering approach using an E. coli expression system. According to direct mass measurements with a quartz crystal microbalance, all the forms of HRP formed monolayer coverage of the enzyme on the gold surface. However, only gold electrodes modified with the recombinant HRP forms (non-glycosylated) exhibited high and stable current response to H2O2 due to its bioelectrocatalytic reduction based on direct electron transfer (ET) between gold and the active site of the enzyme. Introduction of a six-His tag either at the C-terminus or at the N-terminus of the enzyme molecule additionally increased the strength of the enzyme binding with the gold surface and the efficiency of direct ET. Immobilization of recombinant forms of HRP containing histidine functional groups on the surface of the gold electrode was used both for the development of a P-chip, a biosensor for hydrogen peroxide determination based on direct ET, and for the development of a bienzyme biosensor electrode for the determination of L-lysine based on co-immobilized recombinant forms of HRP and L-lysine--oxidase.  相似文献   

9.
A cDNA encoding a rat liver glutathione S-transferase Ya subunit has been expressed in Escherichia coli and the expressed enzyme purified to homogeneity. In order to examine the catalytic role of histidine in the glutathione S-transferase Ya homodimer, site-directed mutagenesis was used to replace all three histidine residues (at positions 8, 143, and 159) by other amino acid residues. The replacement of histidine 8 or histidine 143 with valine did not affect the 1-chloro-2,4-dinitrobenzene-conjugating activity nor the isomerase activity. However, the replacement of histidine with valine at position 159 produced the mutant GST which exhibited only partial activity. A greater decrease in catalytic activity was observed by histidine----tyrosine or histidine----lysine replacement at position 159. On the other hand, the histidine 159----asparagine mutant retained full catalytic activity. Our results indicate that histidine residues in the Ya homodimer are not essential for catalytic activity. However, histidine 159 might be critical in maintaining the proper conformation of this enzyme since replacement of this amino acid by either lysine or tyrosine did result in significant loss of enzymatic activity.  相似文献   

10.
Bovine brain glyoxalase I was investigated in order to identify amino acid residues essential for its catalytic activity. This enzyme is a 44-kDa dimeric protein which exhibits a characteristic intrinsic fluorescence, with an emission peak centered at 342 nm. The total of eight tryptophan residues/molecule was estimated by using a fluorescence titration method. Low values of Stern Volmer quenching constants for the quenchers used indicated that the tryptophan residues are relatively buried in the native molecule. Similar results were obtained for glyoxalase I, purified from yeast and human erythrocytes. The activity of bovine brain glyoxalase I was found to be particularly sensitive to 2,3-butanedione and diethylpyrocarbonate, selective reagents for arginine and histidine residues, respectively. A minor effect was observed by treatment of the enzyme with other amino acid-specific reagents. A protective effect of the competitive inhibitor S-hexylglutathione was observed for all reagents used, indicating the presence of modified amino acids in or near the enzyme active site.  相似文献   

11.
The N-terminal amino acid sequence (23 amino acid residues) and the amino acid composition of the extracellular bacteriolytic enzyme L1 of 21 kD from the bacterium Lysobacter sp. XL1 have been determined. The enzyme was hydrolyzed by trypsin, the resulting peptides were isolated, and their primary structures were determined. A high extent of homology (92%) of the N-terminal amino acid sequence and the primary structure of isolated peptides of the enzyme L1 (62 amino acid residues or 31% of protein sequence) to the corresponding sites of alpha-lytic proteinases (EC 3.4.21.12) of Lysobacter enzymogenes and Achromobacter lyticus was found. These data allowed identification of the endopeptidase L1 of Lysobacter sp. XL1 as alpha-lytic proteinase EC 3.4.21.12.  相似文献   

12.
Phthalic anhydride (PA) modification stabilizes horseradish peroxidase (HRP) by reversal of the positive charge on two of HRP's six lysine residues. Native and PA-HRP had half-inactivation temperatures of 51 and 65 degrees C and half-lives at 65 degrees C of 4 and 17 min, respectively. PA-HRP was more resistant to dimethylformamide at room temperature and tetrahydrofuran at 60 degrees C and to unfolding by heat, guanidine chloride, EDTA, and the reducing agent tris(2-carboxyethyl)phosphine hydrochloride. Binding of the hydrophobic probe Nile Red to the native enzyme and to PA-HRP was similar. The kinetics of both HRPs with the substrates ABTS, ferrocyanide, ferulic acid, and indole-3-propionic acid were measured, as was binding of the inhibitor benzhydroxamic acid. Small improvements in the catalytic properties were detected.  相似文献   

13.
《Phytochemistry》1987,26(3):633-636
The effect of chemical modification of histidine, lysine, arginine, tryptophan and methionine residues on the enzymatic activity of calotropin DI has been studied. 1,3-Dibromoacetone inhibited the enzyme completely, indicating that a single histidine residue and a cysteine residue are involved in its catalytic activity. Its second bistidine residue was modified with diethyl pyrocarbonate without loss of activity. Modification of seven of its 13 lysine residues with 2,4,6-trinitrobenzene sulphonic acid led to 90% loss of its activity, but no single lysine residue appears to be essential for its activity. Four of the 12 arginine residues by 1,2-cyclohexanedione can be modified with little loss of activity. Modification of a single tryptophan residue and two methionine residues did not inhibit enzymatic activity. The blocked amino-terminal amino acid residue of calotropin DI has been identified as pyroglutamic acid. Its amino-terminal amino acid sequence to residue 14 has been determined and compared with that of papain. They show an extensive homology in their amino-terminal amino acid sequences.  相似文献   

14.
J E Scheffler  M Cohn 《Biochemistry》1986,25(13):3788-3796
A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The nine resonance peaks observed in the CIDNP spectrum of yeast phosphoglycerate kinase have been assigned tentatively to five residues: histidines-53 and -151, tryptophan-310, and tyrosines-48 and -195. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could be of functional importance. SBP has one of the most solvent accessible delta-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor that influences the solvent accessibility of this important site. A contact between haem C8 vinyl and the sulphur atom of Met37 is observed in the SBP structure. This interaction might affect the stability of the haem group by stabilisation/delocalisation of the porphyrin pi-cation of compound I.  相似文献   

16.
The effect of surfactants, lipids and fatty acid salts isolated from cow milk on the activity of hemecontaining horseradish peroxidase in solution was studied. As the surfactant concentration increases, the rate of the enzymic reaction successively decreases, increases, and again decreases, down to zero in the case of the fatty acid salts. The initial deceleration of the reaction rate results from the enzyme inhibition. The subsequent increase is caused by an improved accessibility for the substrate and the enhanced activity of the catalytic site of the enzyme due to its immobilization in the surfactant aggregates. A shielding of the protein by these aggregates can explain the secondary deceleration of the enzymic reaction rate. The general character of the dependence is similar and does not depend on the surfactant structure for a series of fatty acid salts and phospholipids; however, it is quite different in the case of cholesterol and sphingomyelin. For communication III, see [1].  相似文献   

17.
Antiperoxidase antibodies enhance refolding of horseradish peroxidase   总被引:1,自引:0,他引:1  
The effect of monoclonal antibodies on protein folding was studied using horseradish peroxidase refolding from guanidine hydrochloride as a model process. Among the five antiperoxidase clones tested, one was found to increase the yield of catalytically active peroxidase after guanidine treatment. The same clone also increased the activity of the native peroxidase by a factor of 2-2.5. While peroxidase refolding under standard conditions resulted in the recovery of only 7-8% of the initial catalytic activity, antibody-assisted refolding increased the yield to 50-100% (or 20-40% from the activity of native enzyme with antibodies). Kinetics of autorefolding and antibody-assisted refolding differed significantly. In the course of autorefolding the catalytic activity was recovered within the first 2.5 min and did not change further within a 2.5- to 60-min interval, whereas in the course of antibody-assisted refolding maximal catalytic activity was attained only in 60 min. The yield of active peroxidase for the antibody-assisted refolding depended linearly on the antibody concentration. The observed effect was strongly specific. Other antiperoxidase clones tested as well as nonspecific antithyroglobulin antibody affected neither kinetics, no the yield of peroxidase refolding.  相似文献   

18.
Analysis of the primary structure of mBEII, with those of other branching and amylolytic enzymes as reference, identifies four highly conserved regions which may be involved in substrate binding and in catalysis. When one of the amino acid residues corresponding to the putative catalytic sites of mBEII, i.e., Asp-386, Glu-441, and Asp-509, was replaced, activity disappeared. These putative catalytic residues are located in three different regions (regions 2–4) of the four highly conserved regions (regions 1–4) which exist in the primary structure of most starch hydrolases and related enzymes, including branching enzymes. Region 3, which contains Glu-441 as one of the putative catalytic residues, was located downstream of the carboxyl-terminal position previously reported. The importance of the carboxyl amino acid residues was also demonstrated by chemical modification of the branching enzyme protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.  相似文献   

19.
A [3H]Dalargin preparation with a molar radioactivity of 52 Ci/mmol was obtained by the high temperature solid-state catalytic isotope exchange (HSCIE) of tritium for hydrogen at 150 degrees C. This tritium-labeled peptide was shown to completely retain its biological activity in the test of binding to opioid receptors from rat brain. The dissociation constant of the Dalargin-opioid receptor complex was found to be 4.3 nM. The dependencies of the chemical yield and the molar radioactivity on the reaction time and temperature of HSCIE were determined. The activation energy of the HSCIE reaction for the peptide was calculated to be 32 kcal/mol. The amino acid analysis showed that tritium is distributed between all the amino acid residues of [3H]Dalargin at the HSCIE reaction, with the temperature growth significantly increasing the total tritium incorporation and, especially, enhancing the radioactivity incorporation into aromatic residues.  相似文献   

20.
α-半乳糖苷酶进行氨基酸组分分析,结果为含有较多的酸性及巯水性氨基酸,较少的组氨酸、酪氨酸及半胱氨酸。 用几种蛋白质侧链修饰试剂对α-半乳糖苷酶进行化学修饰。在一定条件下,当巯基及酪氨酸残基分别被NEM、IAA及NAI修饰后,酶活力不受影响,说明这些基团与活力无关。当羟基、组氨酸及色氨酸残基分别被EDC、DEP、NBS及HNBB修饰后,酶活力大幅度下降,说明这些基团或者参与了酯催化作用或者位于酯活性位区附近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号