首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vacuolar sequestration or cellular extrusion of glutathione-conjugated xenobiotics and catabolites by ATP-binding cassette (ABC) transporters is an important detoxification mechanism operating in many species. In this study, we show that the yeast ABC transporter Bpt1p, a paralogue of Ycf1p, acts as an ATP-dependent vacuolar pump for glutathione conjugates. Bpt1p, which is inhibited by vanadate and glibenclamide, accounts for one third of the total vacuolar transport of glutathione conjugates. Furthermore, immunoblot analyses show that Bpt1p levels are strongly elevated in early stationary phase, consistent with a function of Bpt1p in vacuolar detoxification.  相似文献   

2.
In Saccharomyces cerevisiae, disruption of the YCF1 gene increases the sensitivity of cell growth to mercury. Transformation of the resulting ycf1 null mutant with a plasmid harbouring YCF1 under the control of the GAL promoter largely restores the wild-type resistance to the metal ion. The protective effect of Ycf1p against the toxicity of mercury is especially pronounced when yeast cells are grown in rich medium or in minimal medium supplemented with glutathione. Secretory vesicles from S. cerevisiae cells overproducing Ycf1p are shown to exhibit ATP-dependent transport of bis(glutathionato)mercury. Moreover, using beta-galactosidase as a reporter protein, a relationship between mercury addition and the activity of the YCF1 promoter can be shown. Altogether, these observations indicate a defence mechanism involving an induction of the expression of Ycf1p and transport by this protein of mercury-glutathione adducts into the vacuole. Finally, possible coparticipation in mercury tolerance of other ABC proteins sharing close homology with Ycf1p was investigated. Gene disruption experiments enable us to conclude that neither Bpt1p, Yor1p, Ybt1p nor YHL035p plays a major role in the detoxification of mercury.  相似文献   

3.
The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed.  相似文献   

4.
5.
The yeast vacuolar membrane protein Ycf1p and its mammalian counterpart, MRP1, belong to the ABCC subfamily of ATP-binding cassette (ABC) transporters that rid cells of toxic endogenous and xenobiotic compounds. Like most members of the ABCC subfamily, Ycf1p contains an N-terminal extension in addition to its ABC "core" domain and transports substrates in the form of glutathione conjugates. Ycf1p is subject to complex regulation to ensure its optimal function. Previous studies showed that Ycf1p activity is stimulated by a guanine nucleotide exchange factor, Tus1p, and is positively regulated by phosphorylation in its ABC core domain at residues Ser-908 and Thr-911. Here we provide evidence that phosphorylation of Ser-251 in the Ycf1p N-terminal extension negatively regulates activity. Mutant Ycf1p-S251A exhibits increased resistance to cadmium in vivo and increased Ycf1p-dependent transport of [(3)H]estradiol-beta-17-glucuronide in vitro as compared with wild-type Ycf1p. Activity is restored to the wild-type level for Ycf1-S251E. To identify kinase(s) that negatively regulate Ycf1p function, we conducted an integrated membrane yeast two-hybrid (iMYTH) screen and identified two kinase genes, CKA1 and HAL5, deletion of which increases Ycf1p function. Genetic evidence suggests that Cka1p may regulate Ycf1p function through phosphorylation of Ser-251 either directly or indirectly. Overall, this study provides compelling evidence that negative, as well as positive, regulation of Ycf1p is mediated by phosphorylation.  相似文献   

6.
Recent investigations have established that Arabidopsis thaliana contains a family of genes encoding ATP-binding cassette transporters belonging to the multidrug resistance-associated protein (MRP) family. So named because of the phenotypes conferred by their animal prototypes, many MRPs are MgATP-energized pumps active in the transport of glutathione (GS) conjugates and other bulky amphipathic anions across membranes. Here we show that Arabidopsis MRP2 (AtMRP2) localizes to the vacuolar membrane fraction from seedlings and is not only competent in the transport of GS conjugates but also glucuronate conjugates after heterologous expression in yeast. Based on the stimulatory action of the model GS conjugate 2,4-dinitrophenyl-GS (DNP-GS) on uptake of the model glucuronide 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) and vice versa, double-label experiments demonstrating that the two substrates are subject to simultaneous transport by AtMRP2 and preloading experiments suggesting that the effects seen result from cis, not trans, interactions, it is inferred that some GS conjugates and some glucuronides reciprocally activate each other's transport via distinct but coupled binding sites. The results of parallel experiments on AtMRP1 and representative yeast and mammalian MRPs indicate that these properties are specific to AtMRP2. The effects exerted by DNP-GS on AtMRP2 are not, however, common to all GS conjugates and not simulated by oxidized glutathione or reduced glutathione. Decyl-GS, metolachlor-GS, and oxidized glutathione, although competitive with DNP-GS, do not promote E(2)17betaG uptake by AtMRP2. Reduced glutathione, although subject to transport by AtMRP2 and able to markedly promote E(2)17betaG uptake, neither competes with DNP-GS for uptake nor is subject to E(2)17betaG-promoted uptake. A multisite model comprising three or four semi-autonomous transport pathways plus distinct but tightly coupled binding sites is invoked for AtMRP2.  相似文献   

7.
Summary: Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome.  相似文献   

8.
9.
Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function.  相似文献   

10.
Yeast cadmium factor (Ycf1), an ATP-binding cassette (ABC) protein of the multidrug resistance protein subfamily, is a vacuolar GS-conjugate transporter required for heavy metal and drug detoxification. There is evidence that phosphorylation may play a critical role in the function of ABC transporters from higher organisms. In this work, the possibility of Ycf1 phosphorylation was examined using site-directed mutagenesis. We demonstrate that Ser908 and Thr911, within the regulatory domain (R domain), are functionally important for Ycf1 transport activity and likely sites for phosphorylation. Mutation of these residues to alanine severely impaired the Ycf1-dependent cadmium detoxification capacity and transport activity, while replacement by acidic residues (mimicking phosphorylation) significantly suppressed the cadmium resistance and transport defects. Both in vitro treatment of Ycf1 with alkaline phosphatase and changes in the electrophoretic mobility of the S908A, T911A and double mutant S908A/T911A proteins supported the conclusion that Ycf1 is a phosphoprotein. The screening of the yeast kinome identified four protein kinases affecting cadmium detoxification, but none of them was involved directly in the phosphorylation of Ycf1. Our data strongly implicate Ycf1 phosphorylation as a key determinant in cadmium resistance in yeast, a significant finding given that very little is known about phosphorylation of ABC transporters in yeast.  相似文献   

11.
Ycf1p, a member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette proteins, is a vacuolar membrane transporter that confers resistance to a variety of toxic substances such as cadmium and arsenite. Ycf1p undergoes a PEP4-dependent processing event to yield N- and C-terminal cleavage products that remain associated with one another. In the present study, we sought to determine whether proteolytic cleavage is required for Ycf1p activity. We have identified a unique region within lumenal loop 6 of Ycf1p, designated the loop 6 insertion (L6ins), which appears to be necessary and sufficient for proteolytic cleavage, since L6ins can promote processing when moved to new locations in Ycf1p or into a related transporter, Bpt1p. Surprisingly, mutational results indicate that proteolytic processing is not essential for Ycf1p transport activity. Instead, the L6ins appears to regulate substrate specificity of Ycf1p, since certain mutations in this region lower cellular cadmium resistance with a concomitant gain in arsenite resistance. Although some of these L6ins mutations block processing, there is no correlation between processing and substrate specificity. The activity profiles of the Ycf1p L6ins mutants are dramatically affected by the strain background in which they are expressed, raising the possibility that another cellular component may functionally impact Ycf1p activity. A candidate component may be a new full-length MRP-type transporter (NFT1), reported in the Saccharomyces Genome Database as two adjacent open reading frames, YKR103w and YKR104w, but which we show here is present in most Saccharomyces strains as a single open reading frame.  相似文献   

12.
4-Nitroquinoline 1-oxide (NQO) is a reactive electrophile with potent cytotoxic as well as genotoxic activities. NQO forms a conjugate, QO-SG, with glutathione, which greatly reduces its chemical reactivity. Previous studies demonstrated that glutathione S-transferase (GST) P1a-1a and multidrug resistance protein (MRP) 1/2 act in synergy to confer resistance to both cyto- and genotoxicities of NQO, whereas protection afforded by GSTP1a-1a or MRP alone was much less. To better understand the role of glutathione, GSTP1a-1a, and MRP1 in NQO detoxification, we have characterized the kinetics and cofactor requirements of MRP1-mediated transport of QO-SG and NQO. Additionally, using recombinant GSTP1a-1a and physiological conditions, we have examined the enzymatic and nonenzymatic formation of QO-SG. Results show that MRP1 supports efficient transport of QO-SG with a K(m) of 9.5 microM and a V(max) comparable to other good MRP1 substrates. Glutathione or its S-methyl analogue enhanced the rate of (3)H-QO-SG transport, whereas QO-SG inhibited the rate of (3)H-glutathione transport. These data favor a mechanism for glutathione-enhanced, MRP1-mediated QO-SG transport that does not involve cotransport of glutathione. NQO was not transported by MRP1 either alone or in the presence of S-methyl glutathione. Transport of (3)H-NQO was observed in the presence of glutathione, but uptake into MRP1-containing vesicles was entirely attributable to its conjugate, QO-SG, formed nonenzymatically. While the nonenzymatic rate was readily measurable, enzyme catalysis was overwhelmingly dominant in the presence of GSTP1a-1a (rate enhancement factor, (k(cat)/K(m))/k(2), approximately 3 x 10(6)). We conclude that MRP1 supports detoxification of NQO via efficient, glutathione-stimulated efflux of QO-SG. While nonenzymatic QO-SG formation and MRP1-mediated conjugate efflux result in low-level protection from cyto- and genotoxicities, this protection is greatly enhanced by coexpression of GSTP1-1 with MRP1. This result emphasizes the quantitative importance of enzyme-catalyzed conjugate formation, a crucial determinant of high-level, MRP-dependent protection of cells from NQO toxicity.  相似文献   

13.
Multidrug resistance proteins (MRPs) are ATP-dependent export pumps that mediate the export of organic anions. ABCC1 (MRP1), ABCC2 (MRP2) and ABCC3 (MRP3) are all able to facilitate the efflux of anionic conjugates including glutathione (GSH), glucuronide and sulfate conjugates of xenobiotics and endogenous molecules. Earlier studies showed that ABCC4 functions as an ATP-driven export pump for cyclic AMP and cyclic GMP, as well as estradiol-17-beta-D-glucuronide. However, it was unclear if other conjugated metabolites can be transported by ABCC4. Hence in this study, a fluorescent substrate, bimane-glutathione (bimane-GS) was used to further examine the transport activity of ABCC4. Using cells stably overexpressing ABCC4, this study shows that ABCC4 can facilitate the efflux of the glutathione conjugate, bimane-glutathione. Bimane-glutathione efflux increased with time and >85% of the conjugate was exported after 15min. This transport was abolished in the presence of 2.5microM carbonylcyanide m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. Inhibition was also observed with known inhibitors of MRP transporters including benzbromarone, verapamil and indomethacin. In addition, 100microM methotrexate, an ABCC4 substrate or 100microM 6-thioguanine (6-TG), a compound whose monophosphate metabolite is an ABCC4 substrate, reduced efflux by >40%. A concentration-dependent inhibition of bimane-glutathione efflux was observed with 1-chloro-2,4-dinitrobenzene (CDNB) which is metabolized intracellularly to the glutathione conjugate, 2,4-dinitrophenyl-glutathione (DNP-GS). The determination that ABCC4 can mediate the transport of glucuronide and glutathione conjugates indicates that ABCC4 may play a role in the cellular extrusion of Phase II detoxification metabolites.  相似文献   

14.
Many endogenous or xenobiotic lipophilic substances are eliminated from the cells by the sequence of oxidation, conjugation to an anionic group (glutathione, glucuronate or sulfate) and transport across the plasma membrane into the extracellular space. The latter step is mediated by integral membrane glycoproteins belonging to the superfamily of ATP-Binding Cassette (ABC) transporters. A subfamily, referred as ABCC, includes the famous/infamous cystic fibrosis transmembrane regulator (CFTR), the sulfonylurea receptors (SUR 1 and 2), and the multidrug resistance-associated proteins (MRPs). The name of the MRPs refers to their potential role in clinical multidrug resistance, a phenomenon that hinders the effective chemotherapy of tumors. The MRPs that have been functionally characterized so far share the property of ATP-dependent export pumps for conjugates with glutathione (GSH), glucuronate or sulfate. MRP1 and MRP2 are also mediating the cotransport of unconjugated amphiphilic compounds together with free GSH. MRP3 preferentially transports glucuronides but not glutathione S-conjugates or free GSH. MRP1 and MRP2 also contribute to the control of the intracellular glutathione disulfide (GSSG) level. Although these proteins are low affinity GSSG transporters, they can play essential role in response to oxidative stress when the activity of GSSG reductase becomes rate limiting. The human MRP4, MRP5 and MRP6 have only partially been characterized. However, it has been revealed that MRP4 can function as an efflux pump for cyclic nucleotides and nucleoside analogues, used as anti-HIV drugs. MRP5 also transports GSH conjugates, nucleoside analogues, and possibly heavy metal complexes. Transport of glutathione S-conjugates mediated by MRP6, the mutation of which causes pseudoxantoma elasticum, has recently been shown. In summary, numerous members of the multidrug resistance-associated protein family serve as export pumps that prevent the accumulation of anionic conjugates and GSSG in the cytoplasm, and play, therefore, an essential role in detoxification and defense against oxidative stress.  相似文献   

15.
This review addresses the recent molecular identification of several members of the glutathione S-conjugate (GS-X) pump family, a new class of ATP-binding cassette (ABC) transporters responsible for the elimination and/or sequestration of pharmacologically and agronomically important compounds in mammalian, yeast and plant cells. The molecular structure and function of GS-X pumps encoded by MRP, cMOAT, YCF1. and AtMRP genes, have been conserved throughout molecular evolution. The physiologic function of GS-X pumps is closely related with cellular detoxification, oxidative stress, inflammation, and cancer drug resistance. Coordinated expression of GS-X pump genes, e.g., MRP1 and YCF1, and -glutamylcystaine synthetase, a rate-limiting enzyme of cellular glutathione (GSH) biosynthesis, has been frequently observed.  相似文献   

16.
We investigated the role of phase II (conjugation) and phase III (efflux) detoxification of the anticancer drugs melphalan (MLP) and chlorambucil (CHB). Although both drugs are substrates of Alpha-class glutathione S-transferases (GST) and the monoglutathionyl conjugates formed in these enzymatic reactions are transported by MRP1, we found that GSTA1-1 and MRP1 acted in synergy to confer resistance to CHB but not to MLP (Morrow, C. S., Smitherman, P. K., Diah, S. K., Schneider, E., and Townsend, A. J. (1998) J. Biol. Chem. 273, 20114-20120). To explain this selectivity of MRP1/GST-mediated resistance, we report results of side-by-side experiments comparing the kinetics of MLP- versus CHB-glutathione conjugate: formation, product inhibition of GSTA1-1 catalysis, and transport by MRP1. The monoglutathionyl conjugate of CHB, CHB-SG, is a very strong competitive inhibitor of GSTA1-1 (K(i) 0.14 microM) that is >30-fold more potent than that of the corresponding conjugate of MLP, MLP-SG (K(i) 4.7 microM). The efficiency of GSTA1-1-mediated monoglutathionyl conjugate formation is more than 4-fold higher for CHB than MLP. Lastly, both CHB-SG and MLP-SG are efficiently transported by MRP1 with similar V(max) although the K(m) for CHB-SG (0.37 microm) is significantly lower than for MLP-SG (1.1 microM). These results indicate that MRP1 is required for GSTA1-1-mediated resistance to CHB in order to relieve potent product inhibition of the enzyme by intracellular CHB-SG formed. The kinetic properties of MRP1 are well suited to eliminate CHB-SG at pharmacologically relevant concentrations. For MLP detoxification, where product inhibition of GSTA1-1 is less important, GSTA1-1 does not confer resistance because of the relatively poorer catalytic efficiency of MLP-SG formation. Similar analyses can be useful for predicting the pharmacological and toxicological consequences of MRP and GST expression on cellular sensitivity to various other electrophilic xenobiotics.  相似文献   

17.
YCF1 is a yeast vacuole membrane transporter involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors. MRP1 contributes to multidrug resistance (MDR) in tumor cells. MRP1 and YCF1 have extensive amino acid sequence homology (63% amino acid similarity). We expressed MRP1 or YCF1 in insect cell membranes and compared their functions to know more about their structure-function relationships. YCF1 and MRP1 with His epitopes were expressed in Sf21 insect cells; both of them in the plasma membrane. The ATP-dependent transport of [(3)H]LTC(4) in Sf/YCF1-His vesicles was osmotically sensitive and showed saturable kinetics with an apparent K(m) of 758 nM for LTC(4) and 94 microM for ATP which were similar to those in yeast cells. The K(m) of YCF1 for LTC(4) (758 nM) was sevenfold higher than that of MRP1 (108 nM). MK-571 and ONO-1078, reversing agents for MRP1-mediated MDR, considerably inhibited the transport of LTC(4) by both YCF1 and MRP1. However, PAK-104P, a pyridine analog that reverses MDR associated with P-gp and MRP1, inhibited the transporting activity of MRP1 stronger than that of YCF1. KE1, another MDR reversing agent, moderately inhibited the transport of LTC(4) by MRP1 but not that of YCF1. In conclusion, we successfully expressed yeast YCF1 in Sf21 insect cells and found that the localization of the protein was different from that in yeast. The function of YCF1 in Sf21 insect cells was similar but not identical to that of MRP1.  相似文献   

18.
Lee ME  Singh K  Snider J  Shenoy A  Paumi CM  Stagljar I  Park HO 《Genetics》2011,188(4):859-870
Maintenance of redox homeostasis is critical for the survival of all aerobic organisms. In the budding yeast Saccharomyces cerevisiae, as in other eukaryotes, reactive oxygen species (ROS) are generated during metabolism and upon exposure to environmental stresses. The abnormal production of ROS triggers defense mechanisms to avoid the deleterious consequence of ROS accumulation. Here, we show that the Rho1 GTPase is necessary to confer resistance to oxidants in budding yeast. Temperature-sensitive rho1 mutants (rho1(ts)) are hypersensitive to oxidants and exhibit high accumulation of ROS even at a semipermissive temperature. Rho1 associates with Ycf1, a vacuolar glutathione S-conjugate transporter, which is important for heavy metal detoxification in yeast. Rho1 and Ycf1 exhibit a two-hybrid interaction with each other and form a bimolecular fluorescent complex on the vacuolar membrane. A fluorescent-based complementation assay suggests that the GTP-bound Rho1 associates with Ycf1 and that their interaction is enhanced upon exposure to hydrogen peroxide. The rho1(ts) mutants also exhibit hypersensitivity to cadmium, while cells carrying a deletion of YCF1 or mutations in a component of the Pkc1-MAP kinase pathway exhibit little or minor sensitivity to oxidants. We thus propose that Rho1 protects yeast cells from oxidative stress by regulating multiple downstream targets including Ycf1. Since both Rho1 and Ycf1 belong to highly conserved families of proteins, similar mechanisms may exist in other eukaryotes.  相似文献   

19.
Inorganic arsenic is an established human carcinogen, but its metabolism is incompletely defined. The ATP binding cassette protein, multidrug resistance protein (MRP1/ABCC1), transports conjugated organic anions (e.g. leukotriene C(4)) and also co-transports certain unmodified xenobiotics (e.g. vincristine) with glutathione (GSH). MRP1 also confers resistance to arsenic in association with GSH; however, the mechanism and the species of arsenic transported are unknown. Using membrane vesicles prepared from the MRP1-overexpressing lung cancer cell line, H69AR, we found that MRP1 transports arsenite (As(III)) only in the presence of GSH but does not transport arsenate (As(V)) (with or without GSH). The non-reducing GSH analogs L-gamma-glutamyl-L-alpha-aminobutyryl glycine and S-methyl GSH did not support As(III) transport, indicating that the free thiol group of GSH is required. GSH-dependent transport of As(III) was 2-fold higher at pH 6.5-7 than at a more basic pH, consistent with the formation and transport of the acid-stable arsenic triglutathione (As(GS)(3)). Immunoblot analysis of H69AR vesicles revealed the unexpected membrane association of GSH S-transferase P1-1 (GSTP1-1). Membrane vesicles from an MRP1-transfected HeLa cell line lacking membrane-associated GSTP1-1 did not transport As(III) even in the presence of GSH but did transport synthetic As(GS)(3). The addition of exogenous GSTP1-1 to HeLa-MRP1 vesicles resulted in GSH-dependent As(III) transport. The apparent K(m) of As(GS)(3) for MRP1 was 0.32 microM, suggesting a remarkably high relative affinity. As(GS)(3) transport by MRP1 was osmotically sensitive and was inhibited by several conjugated organic anions (MRP1 substrates) as well as the metalloid antimonite (K(i) 2.8 microM). As(GS)(3) transport experiments using MRP1 mutants with substrate specificities differing from wild-type MRP1 suggested a commonality in the substrate binding pockets of As(GS)(3) and leukotriene C(4). Finally, human MRP2 also transported As(GS)(3). In conclusion, MRP1 transports inorganic arsenic as a tri-GSH conjugate, and GSTP1-1 may have a synergistic role in this process.  相似文献   

20.
The yeast cadmium factor (Ycf1p) is a vacuolar protein involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors in yeast. It belongs to the superfamily of ATP binding cassette transporters, which includes the human cystic fibrosis transmembrane conductance regulator and the multidrug resistance-associated protein. To examine the functional significance of conserved amino acid residues in Ycf1p, we performed an extensive mutational analysis. Twenty-two single amino acid substitutions or deletions were generated by site-directed mutagenesis in the nucleotide binding domains, the proposed regulatory domain, and the fourth cytoplasmic loop. Mutants were analyzed phenotypically by measuring their ability to grow in the presence of Cd(2+). Expression and subcellular localization of the mutant proteins were examined by immunodetection in vacuolar membranes. For functional characterization of the Ycf1p variants, the kinetic parameters of glutathione S-conjugated leukotriene C(4) transport were measured. Our analysis shows that residues Ile(711), Leu(712), Phe(713), Glu(927), and Gly(1413) are essential for Ycf1p expression. Five other amino acids, Gly(663), Gly(756), Asp(777), Gly(1306), and Gly(1311), are critical for Ycf1p function, and two residues, Glu(709) and Asp(821), are unnecessary for Ycf1p biogenesis and function. We also identify several regulatory domain mutants in which Cd(2+) tolerance of the mutant strain and transport activity of the protein are dissociated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号