首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classic tetrahydrobiopterin (BH(4)) deficiencies are characterized by hyperphenylalaninemia and deficiency of monoamine neurotransmitters. In this article, we report two patients with progressive psychomotor retardation, dystonia, severe dopamine and serotonin deficiencies (low levels of 5-hydroxyindoleacetic and homovanillic acids), and abnormal pterin pattern (high levels of biopterin and dihydrobiopterin) in cerebrospinal fluid. Furthermore, they presented with normal urinary pterins and without hyperphenylalaninemia. Investigation of skin fibroblasts revealed inactive sepiapterin reductase (SR), the enzyme catalyzing the final two-step reaction in the biosynthesis of BH(4). Mutations in the SPR gene were detected in both patients and their family members. One patient was homozygous for a TC-->CT dinucleotide exchange, predicting a truncated SR (Q119X). The other patient was a compound heterozygote for a genomic 5-bp deletion (1397-1401delAGAAC) resulting in abolished SPR-gene expression and an A-->G transition leading to an R150G amino acid substitution and to inactive SR as confirmed by recombinant expression. The absence of hyperphenylalaninemia and the presence of normal urinary pterin metabolites and of normal SR-like activity in red blood cells may be explained by alternative pathways for the final two-step reaction of BH(4) biosynthesis in peripheral and neuronal tissues. We propose that, for the biosynthesis of BH(4) in peripheral tissues, SR activity may be substituted by aldose reductase (AR), carbonyl reductase (CR), and dihydrofolate reductase, whereas, in the brain, only AR and CR are fully present. Thus, autosomal recessive SR deficiency leads to BH(4) and to neurotransmitter deficiencies without hyperphenylalaninemia and may not be detected by neonatal screening for phenylketonuria.  相似文献   

2.
真菌异化硝酸盐还原机理的研究进展   总被引:1,自引:0,他引:1  
真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。真菌异化硝酸盐还原途径是在环境中氧供给受限的情况下发生的, 包括反硝化和氨的发酵。硝酸盐能诱导产生反硝化作用的酶, 其中, 硝酸盐还原酶与亚硝酸还原酶位于线粒体中, 它们所催化的酶促反应能偶联呼吸链ATP合成酶合成ATP, 同时产生NO。与参与反硝化作用前两个酶不同, 真菌NO还原酶能以NADH为直接电子供体将NO还原为N2O, 在NAD+的再生和自由基NO的脱毒中起着重要作用。氨发酵则将硝酸盐还原成NH4+, 同时偶联乙酸的生成和底物水平磷酸化。此文从参与该过程的关键酶、关键酶的表达调节、真菌与细菌异化硝酸盐还原的比较等角度综述了真菌异化硝酸盐还原的最新研究进展。  相似文献   

3.
Nitric oxide (NO) produced from NO synthase(s) (NOS) is an important cell signaling molecule in physiology and pathophysiology. It remains challenging, however, to measure NO accurately and reproducibly in many cell types producing relatively low levels of NO from the enzymes such as endothelial NO synthase (eNOS). In the present study, we describe a very sensitive and convenient analytical method that affords measurement of 1 to 2 nM concentration of NO(x) (nitrite plus nitrate) in culture media. In the present study, we used an ultra-sensitive NO-selective electrochemical sensor (AmiNO700) in combination with a highly efficient nitrate conversion method, which coupled the nitrate reductase step with the glucose-6-phosphate dehydrogenase system. An aliquot of conditioned culture media was first treated with nitrate reductase, NADPH, glucose-6-phosphate dehydrogenase and glucose-6-phosphate to convert nitrate to nitrite quantitatively. The nitrite (that is present originally plus the reduced nitrate) was then reduced to equimolar NO in an acidic iodide bath while NO was being detected by the sensor. With this analytical method, we can quantitatively and reliably measure basal and stimulated NO release from cultured endothelial cells. We believe this improved assay should be useful in measuring a wide range of NO levels, especially the low but physiologically relevant levels, in many cell types.  相似文献   

4.
《Free radical research》2013,47(10):1173-1183
Abstract

Oxidative stress may cause a loss of tetrahydrobiopterin (BH4), a co-factor of nitric oxide synthase (NOS), decrease the bioavailability of NO and aggravate ischemia/reperfusion (I/R) injury in diabetic heart. We hypothesized that ascorbic acid (AA) and N-acetyl cysteine (NAC) protect the diabetic heart from I/R injury by increasing BH4/dihydrobiopterin (BH2) ratio and inhibiting uncoupling of NOS. Diabetes mellitus was induced in rats by streptozotocin treatment, and the hearts were isolated and perfused. BH4 and BH4/BH2 ratio decreased in the diabetic heart associated with increased production of superoxide and nitrotyrosine (NT). Treatment with AA or NAC significantly increased BH4/BH2 ratio in the diabetic heart associated with decreased production of superoxide and NT and increased generation of nitrate plus nitrite (NOx). Pre-treatment with AA or NAC before 30 min ischemia followed by 120 min reperfusion improved left ventricular (LV) function and reduced infarct size in the diabetic but not non-diabetic hearts. The NOS inhibitor, L-NAME, inhibited the increase in the generation of superoxide, NT and NOx, but aggravated LV function and increased infarct size in the diabetic heart. L-NAME also abrogated the increase in NOx and improvement of LV function and the infarct size-limiting effect induced by AA or NAC in the diabetic heart. These results suggest that AA and NAC increase BH4/BH2 ratio and prevent NOS uncoupling in the diabetic heart. Resultant increase in the bioavailability of NO renders the diabetic heart toleratant to I/R injury.  相似文献   

5.
Oxidative stress may cause a loss of tetrahydrobiopterin (BH4), a co-factor of nitric oxide synthase (NOS), decrease the bioavailability of NO and aggravate ischemia/reperfusion (I/R) injury in diabetic heart. We hypothesized that ascorbic acid (AA) and N-acetyl cysteine (NAC) protect the diabetic heart from I/R injury by increasing BH4/dihydrobiopterin (BH2) ratio and inhibiting uncoupling of NOS. Diabetes mellitus was induced in rats by streptozotocin treatment, and the hearts were isolated and perfused. BH4 and BH4/BH2 ratio decreased in the diabetic heart associated with increased production of superoxide and nitrotyrosine (NT). Treatment with AA or NAC significantly increased BH4/BH2 ratio in the diabetic heart associated with decreased production of superoxide and NT and increased generation of nitrate plus nitrite (NOx). Pre-treatment with AA or NAC before 30 min ischemia followed by 120 min reperfusion improved left ventricular (LV) function and reduced infarct size in the diabetic but not non-diabetic hearts. The NOS inhibitor, L-NAME, inhibited the increase in the generation of superoxide, NT and NOx, but aggravated LV function and increased infarct size in the diabetic heart. L-NAME also abrogated the increase in NOx and improvement of LV function and the infarct size-limiting effect induced by AA or NAC in the diabetic heart. These results suggest that AA and NAC increase BH4/BH2 ratio and prevent NOS uncoupling in the diabetic heart. Resultant increase in the bioavailability of NO renders the diabetic heart toleratant to I/R injury.  相似文献   

6.
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.  相似文献   

7.
Adult rat cardiac myocytes typically display a phenotypic response to cytokines manifested by low or no increases in nitric oxide (NO) production via inducible NO synthase (iNOS) that distinguishes them from other cell types. To better characterize this response, we examined the expression of tetrahydrobiopterin (BH4)-synthesizing and arginine-utilizing genes in cytokine-stimulated adult cardiac myocytes. Intracellular BH4 and 7,8-dihydrobiopterin (BH2) and NO production were quantified. Cytokines induced GTP cyclohydrolase and its feedback regulatory protein but with deficient levels of BH4 synthesis. Despite the induction of iNOS protein, cytokine-stimulated adult cardiac myocytes produced little or no increase in NO versus unstimulated cells. Western blot analysis under nonreducing conditions revealed the presence of iNOS monomers. Supplementation with sepiapterin (a precursor of BH4) increased BH4 as well as BH2, but this did not enhance NO levels or eliminate iNOS monomers. Similar findings were confirmed in vivo after treatment of rat cardiac allograft recipients with sepiapterin. It was found that expression of dihydrofolate reductase, required for full activity of the salvage pathway, was not detected in adult cardiac myocytes. Thus, adult cardiac myocytes have a limited capacity to synthesize BH4 after cytokine stimulation. The mechanisms involve posttranslational factors impairing de novo and salvage pathways. These conditions are unable to support active iNOS protein dimers necessary for NO production. These findings raise significant new questions about the prevailing understanding of how cytokines, via iNOS, cause cardiac dysfunction and injury in vivo during cardiac inflammatory disease states since cardiac myocytes are not a major source of high NO production.  相似文献   

8.
Treatment with tetrahydrobiopterin (BH(4)) reduces blood pressure in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that chronic BH(4) reduces blood pressure in male SHR by reducing testosterone biosynthesis mediated by increasing nitric oxide (NO). Male SHR, aged 17-18 wk, intact or castrated, were treated for 1 wk with BH(4) (20 mg.kg(-1).day(-1) ip). After 1 wk, mean arterial pressure (MAP), serum testosterone, and nitrate/nitrite excretion (NO(x)) were measured. MAP was significantly higher in intact males than castrated males (179 +/- 2 vs. 155 +/- 4 mmHg, P < 0.001). In intact males, BH(4) caused a 17% reduction in MAP (148 +/- 2 mmHg), had no effect on NO(x), and reduced serum testosterone by 85% (24.09 +/- 2.37 vs. 3.72 +/- 0.73 ng/dl; P < 0.001). In castrated males, BH(4) had no effect on MAP (152 +/- 5 mmHg) but increased NO(x) by 38%. When castrated males were supplemented with testosterone, MAP increased to the same level as in intact males (180 +/- 7 mmHg), and BH(4) had no effect on MAP (182 +/- 7 mmHg) or NO(x). NO has been shown to decrease testosterone biosynthesis. Chronic sodium nitrite (70 mg.kg(-1).day(-1) x 1 wk) decreased MAP in intact males (150 +/- 4 mmHg) but had no effect on serum testosterone (21.46 +/- 3.08 ng/dl). The data suggest that BH(4) reduces testosterone synthesis and thereby reduces MAP in male SHR, an androgen-dependent model of hypertension. The mechanism(s) by which BH(4) reduces serum testosterone levels are not clear, but the data do not support a role for NO as a mediator.  相似文献   

9.
与氮转化有关的土壤酶活性对抑制剂施用的响应   总被引:41,自引:6,他引:35  
利用室内模拟培养试验,研究好气条件下施用尿素后土壤脲酶、脲酸还原酶、亚硝酸还原酶和羟胺还原酶活性对脲酶抑制剂氢醌(HQ)与硝化抑制剂包被碳化钙(ECC)和双氰胺(DCD)组合(HQ ECC、HQ DCD)的响应、结果表明,HQ DCD组合与其它抑制剂处理相比能更有效地降低土壤脲酶活性,增加硝酸还原酶、亚硝酸还原酶、羟胺还原酶活性,不同处理土壤脲酶、亚硝酸还原酶和羟胺还原酶活性与土壤NH4^ 、NO3^-、NH3挥发和N2O排放速率间存在不同形式的显著相关关系:土壤脲酶、亚硝酸还原酶和羟胺还原酶活性之间存在不同形式的显著正相关关系。  相似文献   

10.
We have studied the reaction of reduced nitric-oxide synthase (NOS) with molecular oxygen at -30 degrees C. In the first reaction cycle (from L-Arg to hydroxy-L-Arg), an oxygen adduct complex formed rapidly. Experiments in the absence of the reductase domain demonstrated that this complex was then further reduced by one electron stemming from the cofactor tetrahydrobiopterin (BH4). Spectral evidence suggested an iron(IV) porphyrin pi-cation radical as an intermediate. The nature of the oxidized BH4 was identified by EPR as a BH3* radical. Within the second cycle (from hydroxy-L-Arg to citrulline and NO), an iron(III)-NO complex could be identified clearly by its spectral characteristics. The strict requirement of BH4 for its formation suggests that BH4 plays a redox role, although transient, also in the second reaction cycle.  相似文献   

11.
BACKGROUND: Nitric oxide (NO) has been shown to decrease myointimal hyperplasia in injured blood vessels. We hypothesize inducible No synthase (iNOS) gene transfer even at low efficiency will provide adequate local no production to achieve this goal. MATERIALS AND METHODS: A retroviral vector containing the human iNOS cDNA (DFGiNOS) was used to transfer the iNOS gene into vascular cells and isolated blood vessels to answer the following questions: can vascular endothelial and smooth muscle cells support iNOS activity and will low efficiency iNOS gene transfer suppress myointimal hyperplasia in injured porcine arteries? RESULTS: DFGiNOS-infected sheep pulmonary artery endothelial cells (SPAEC) expressed significant iNOS mRNA and protein, releasing nitrite levels of 155.0 +/- 10.7 nmol/mg protein/24 h vs. 5.5 +/- 1.1 by control cells. Transduced rat smooth muscle cells (RSMC) also expressed abundant iNOS mRNA and protein, but, in contrast to SPAEC, NO synthesis was dependent on exogenous tetrahydrobiopterin (BH4) (291.8 +/- 10.4 nmol nitrite/mg protein/24 hr with BH4, 37.7 +/- 2.6 without BH4). Only porcine arteries infected with DFGiNOS following balloon injury exhibited a 3-fold increase in total NO synthesis and a 15-fold increase in cGMP levels over control vessels in a BH4 dependent fashion, despite only a 1% gene transfer efficiency. Transfer of iNOS completely prevented the 53% increase in myointimal thickness induced by balloon catheter injury; the administration of a NOS inhibitor reversed this effect. CONCLUSIONS: These in vitro findings suggest that vascular iNOS gene transfer may be feasible. Furthermore, a low gene transfer efficiency may be sufficient to inhibit myointimal hyperplasia following arterial balloon injury, although a source of BH4 may be required.  相似文献   

12.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

13.
We examined the effect of the immunosuppressant, cyclosporin A (CsA) on the synthesis of tetrahydrobiopterin (BH4), a cofactor for nitric oxide (NO) synthase and a scavenger of reactive oxygen species (ROS), in mouse brain microvascular endothelial cells. Treatment with CsA increased the BH4 content and the expression of mRNA level of GTP cyclohydrolase I, the rate-limiting enzyme of BH4 synthesis. 2,4-Diamino-6-hydroxypyrimidine, an inhibitor of GTP cyclohydrolase I, strongly reduced the CsA-induced increase in BH4 content. Cycloheximide (CHX), a protein synthesis inhibitor, also reduced CsA-induced BH4 synthesis. These findings suggest that CsA stimulates BH4 synthesis via a de novo pathway with the induction of GTP cyclohydrolase I. Moreover, CsA-induced the mRNA level of the inducible type of NO synthase, and stimulated the L-citrulline formation from L-arginine, which is a marker for NO synthesis. The CsA-stimulated L-citrulline formation was attenuated by the co-treatment with GTP cyclohydrolase I inhibitor. The expression of the endothelial type of NO synthase was low under basal condition, and was not affected by the treatment with CsA. These findings suggest that increase in BH4 content induced by CsA is coupled with NO production by inducible type of NO synthase.  相似文献   

14.
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.  相似文献   

15.
Nitric oxide (NO) synthesis is induced in vascular smooth muscle cells by lipopolysaccharide (LPS) where it appears to mediate a variety of vascular dysfunctions. In some cell types tetrahydrobiopterin (BH4) synthesis has also been found to be induced by cytokines. Because BH4 is a cofactor for NO synthase, we investigated whether BH4 synthesis is required for LPS-induced NO production in rat aortic smooth muscle cells (RASMC). The total biopterin content (BH4 and more oxidized states) of untreated RASMC was below our limit of detection. However, treatment with LPS caused a significant rise in biopterin levels and an induction of NO synthesis; both effects of LPS were markedly potentiated by interferon-gamma. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis, completely abolished the elevated biopterin levels induced by LPS. DAHP also caused a concentration-dependent inhibition of LPS-induced NO synthesis. Inhibition of NO synthesis by DAHP was reversed by sepiapterin, an agent which circumvents the inhibition of biopterin synthesis by DAHP by serving as a substrate for BH4 synthesis via the pterin salvage pathway. The reversal by sepiapterin was overcome by methotrexate, an inhibitor of the pterin salvage pathway. Sepiapterin, and to a lesser extent BH4, dose-dependently enhanced LPS-induced NO synthesis, indicating that BH4 concentration limits the rate of NO production by LPS-activated RASMC. Sepiapterin also caused LPS-induced NO synthesis to appear with an abbreviated lag period phase, suggesting that BH4 availability also limits the onset of NO synthesis. In contrast to the stimulation of LPS-induced NO synthesis, observed when sepiapterin was given alone, sepiapterin became a potent inhibitor of NO synthesis in the presence of methotrexate. This is attributable to a direct inhibitory action of sepiapterin on GTP cyclohydrolase I, an activity which is only revealed after blocking the metabolism of sepiapterin to BH4. Further studies with sepiapterin, methotrexate, and N-acetylserotonin (an inhibitor of the BH4 synthetic enzyme, sepiapterin reductase) indicated that the BH4 is synthesized in RASMC predominantly from GTP; however, a lesser amount may derive from pterin salvage. We demonstrate that BH4 synthesis is an absolute requirement for induction of NO synthesis by LPS in vascular smooth muscle. Our findings also suggest that pterin synthesis inhibitors may be useful for the therapy of endotoxin- and cytokine-induced shock.  相似文献   

16.
Evaluation of nitric oxide production by lactobacilli   总被引:4,自引:0,他引:4  
Six strains of Lactobacillus fermentum and Lactobacillus plantarum were investigated for nitric oxide (NO) production. First, the potential presence of NO synthase was examined. None of the strains of L. fermentum and L. plantarum examined produced NO from L-arginine under aerobic conditions. Interestingly, all L. fermentum strains expressed strong L-arginine deiminase activity. All L. fermentum strains produced NO in MRS broth, but the NO was found to be chemically derived from nitrite, which was produced by L. fermentum from nitrate present in the medium. Indeed all L. fermentum strains express nitrate reductase under anaerobic conditions. Moreover, one strain, L. fermentum LF1, had nitrate reductase activity under aerobic conditions. It was also found that L. fermentum strains JCM1173 and LF1 possessed ammonifying nitrite reductase. The latter strain also had denitrifying nitrite reductase activity at neutral pH under both anaerobic and aerobic conditions. The LF1 strain is thus capable of biochemically converting nitrate to NO. NO and nitrite produced from nitrate by lactobacilli may constitute a potential antimicrobial mechanism. studied in a rat acute liver injury model (Adawi et al. 1997). The results indicate that Lactobacillus plantarum DSM 9842 may possess NOS (Adawi et al. 1997). However, NO production from L-arginine has not been investigated in pure cultures of L. plantarum. According to the results of a 15N enrichment experiment, traces of (NO2-+NO3-)-N (total oxidised nitrogen: TON), which seemed to be formed by the resting cells of Lactobacillus fermentum IFO3956, appeared to be derived from L-arginine (Morita et al. 1997). Therefore, it was suggested that L. fermentum may possess a NOS. However, NO produced from L-arginine was not directly measured and a NOS inhibitor test was not performed by Morita et al. (1997). It is known that L-arginine deiminase (ADI) in bacteria may convert L-arginine to NH4+ (Cunin et al. 1986), which may be further oxidised to TON via nitrification by bacteria. Therefore, 15N enrichment experiments could not definitely conclude that L. fermentum possess NOS to convert L-arginine directly to NO. In this study, six Lactobacillus strains belonging to L. plantarum and L. fermentum were measured for NO production in MRS broth. The metabolism of nitrate and L-arginine by the Lactobacillus cell suspensions was also studied. The possibility that NO and nitrite production by lactobacilli may be a potential probiotic trait is also discussed.  相似文献   

17.
Berka V  Tsai AL 《Biochemistry》2000,39(31):9373-9383
Endothelial nitric oxide synthase (eNOS) is a self-sufficient P450-like enzyme. A P450 reductase domain is tethered to an oxygenase domain containing the heme, the substrate (L-arginine) binding site, and a cofactor, tetrahydrobiopterin (BH(4)). This "triad", located at the distal heme pocket, is the center of oxygen activation and enzyme catalysis. To probe the relationships among these three components, we examined the binding kinetics of three different small heme ligands in the presence and absence of either L-arginine, BH(4), or both. Imidazole binding was strictly competitive with L-arginine, indicating a domain overlap. BH(4) had no obvious effect on imidazole binding but slightly increased the k(on) for L-arginine. L-Arginine decreased the k(on) and k(off) for cyanide by two orders, indicating a "kinetic obstruction" mechanism. BH(4) slightly enhanced cyanide binding. Nitric oxide (NO) binding kinetics were more complex. Increasing the L-arginine concentration decreased the NO binding affinity at equilibrium. In both BH(4)-abundant and BH(4)-deficient eNOS, half of the NO binding sites showed a sizable decrease of the binding rate by L-arginine, with the rate of NO binding at the other half of the sites remaining essentially unaltered by L-arginine, implying that the two heme centers in the eNOS dimer are functionally distinct.  相似文献   

18.
Uncoupling of nitric oxide synthase (NOS) has been implicated in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). We hypothesized that inducible NOS (iNOS) plays a crucial role in LV remodeling after MI, depending on its coupling status. MI was created in wild-type, iNOS-knockout (iNOS(-/-)), endothelial NOS-knockout (eNOS(-/-)), and neuronal NOS-knockout (nNOS(-/-)) mice. iNOS and nNOS expressions were increased after MI associated with an increase in nitrotyrosine formation. The area of myocardial fibrosis and LV end-diastolic volume and ejection fraction were more deteriorated in eNOS(-/-) mice compared with other genotypes of mice 4 wk after MI. The expression of GTP cyclohydrolase was reduced, and tetrahydrobiopterin (BH(4)) was depleted in the heart after MI. Oral administration of sepiapterin after MI increased dihydrobiopterin (BH(2)), BH(4), and BH(4)-to-BH(2) ratio in the infarcted but not sham-operated heart. The increase in BH(4)-to-BH(2) ratio was associated with inhibition of nitrotyrosine formation and an increase in nitrite plus nitrate. However, this inhibition of NOS uncoupling was blunted in iNOS(-/-) mice. Sepiapterin increased capillary density and prevented LV remodeling and dysfunction after MI in wild-type, eNOS(-/-), and nNOS(-/-) but not iNOS(-/-) mice. N(ω)-nitro-L-arginine methyl ester abrogated sepiapterin-induced increase in nitrite plus nitrate and angiogenesis and blocked the beneficial effects of sepiapterin on LV remodeling and function. These results suggest that sepiapterin enhances angiogenesis and functional recovery after MI by activating the salvage pathway for BH(4) synthesis and increasing bioavailable nitric oxide predominantly derived from iNOS.  相似文献   

19.
Nitric oxide (NO) is generated in biological systems primarily via the activity of NO synthases and nitrate and nitrite reductases. Here we show that Salmonella enterica serovar Typhimurium (S. typhimurium) grown anaerobically with nitrate is capable of generating polarographically detectable NO after nitrite (NO(2)(-)) addition. NO accumulation is sensitive to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Neither an fnr mutant nor an fnr hmp double mutant produces NO, indicating the involvement in NO evolution from NO(2)(-) of protein(s) positively regulated by FNR. Contrary to previous findings in Escherichia coli, we demonstrate that neither the periplasmic nitrite reductase (NrfA) nor the cytoplasmic nitrite reductase (NirB) is involved in NO production in S. typhimurium. However, mutant cells lacking the membrane-bound nitrate reductase, NarGHI, and membranes derived from these cells are unable to produce NO, demonstrating that, in wild-type S. typhimurium, this enzyme is responsible for NO production. Membrane terminal oxidases cannot account for the NO levels measured. The nitrate reductase inhibitor, azide, abrogates NO evolution by Salmonella, and production of NO occurs only in the absence from the assays of nitrate; both features reveal a marked similarity between the NO-generating activities of this bacterium and plants. Unlike the situation in E. coli, an S. typhimurium hmp mutant produces NO both aerobically and anaerobically. Under aerobic conditions, when a functional flavohemoglobin is present, no NO is detectable. We propose a homeostatic mechanism in S. typhimurium, in which NO produced from NO(2)(-) by nitrate reductase derepresses Hmp expression (via FNR and NsrR) and NorV expression (via NorR) and thus limits NO toxicity.  相似文献   

20.
The objective of this study was to determine whether a constitutive isoform of nitric oxide (NO) synthase is present in rabbit corpus cavernosum that could account for the involvement of the L-arginine-NO pathway in neurogenically-elicited relaxation of the corpus cavernosum and, therefore, penile erection. Citrulline was determined by monitoring the formation of 3H-citrulline from 3H-L-arginine. NO was determined by monitoring the formation of total NO(x) (NO+nitrite [NO2-]+nitrate [NO3-]) by chemiluminescence after reduction of NO(x) to NO by acidic vanadium (III). Equimolar quantities of NO plus citrulline were generated from L-arginine and the formation of both products was time-dependent at 37 degrees C. NO synthase activity was distributed almost entirely to the cytosolic fraction. Enzymatic activity was completely dependent on NADPH, calmodulin, and calcium. Addition of tetrahydrobiopterin increased NO synthase activity by about 30 percent. The NO synthase inhibitor NG-nitro-L-arginine, abolished enzymatic activity. The Km for L-arginine was 17 microM and the Vmax of the reaction was 18 pmol/min/mg protein. These observations indicate that a cytosolic, constitutive isoform of NO synthase, like that found in brain neuronal tissue, is present in rabbit corpus cavernosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号